skip to main content

Search for: All records

Creators/Authors contains: "Tang, H."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Robles, A. (Ed.)
    Although various navigation apps are available, people who are blind or have low vision (PVIB) still face challenges to locate store entrances due to missing geospatial information in existing map services. Previously, we have developed a crowdsourcing platform to collect storefront accessibility and localization data to address the above challenges. In this paper, we have significantly improved the efficiency of data collection and user engagement in our new AI-enabled Smart DoorFront platform by designing and developing multiple important features, including a gamified credit ranking system, a volunteer contribution estimator, an AI-based pre-labeling function, and an image gallery feature. For achieving these, we integrate a specially designed deep learning model called MultiCLU into the Smart DoorFront. We also introduce an online machine learning mechanism to iteratively train the MultiCLU model, by using newly labeled storefront accessibility objects and their locations in images. Our new DoorFront platform not only significantly improves the efficiency of storefront accessibility data collection, but optimizes user experience. We have conducted interviews with six adults who are blind to better understand their daily travel challenges and their feedback indicated that the storefront accessibility data collected via the DoorFront platform would be very beneficial for them. 
    more » « less
    Free, publicly-accessible full text available June 1, 2024
  2. With the recent report of erroneous content in 3GPP specifications leading to real-world vulnerabilities, attention has been drawn to not only the specifications but also the way they are maintained and adopted by manufacturers and carriers. In this paper, we report the first study on this 3GPP ecosystem, for the purpose of understanding its security hazards. Our research leverages 414,488 Change Requests (CRs) that document the problems discovered from specifications and proposed changes, which provides valuable information about the security assurance of the 3GPP ecosystem. Analyzing these CRs is impeded by the challenge in finding security-relevant CRs (SR-CRs), whose security connections cannot be easily established by even human experts. To identify them, we developed a novel NLP/ML pipeline that utilizes a small set of positively labeled CRs to recover 1,270 high-confidence SR-CRs. Our measurement on them reveals serious consequences of specification errors and their causes, including design errors and presentation issues, particularly the pervasiveness of inconsistent descriptions (misalignment) in security-relevant content. Also important is the discovery of a security weakness inherent to the 3GPP ecosystem, which publishes an SR-CR long before the specification has been fixed and related systems have been patched. This opens an "attack window", which can be as long as 11 years! Interestingly, we found that some recently reported vulnerabilities are actually related to the CRs published years ago. Further, we identified a set of vulnerabilities affecting major carriers and mobile phones that have not been addressed even today. With the trend of SR-CRs not showing any sign of abating, we propose measures to improve the security assurance of the ecosystem, including responsible handling of SR-CRs. 
    more » « less
  3. Santiago, J. (Ed.)
    The storefront accessibility can substantially impact the way people who are blind or visually impaired (BVI) travel in urban environments. Entrance localization is one of the biggest challenges to the BVI people. In addition, improperly designed staircases and obstructive store decorations can create considerable mobility challenges for BVI people, making it more difficult for them to navigate their community hence reducing their desire to travel. Unfortunately, there are few approaches to acquiring this information in advance through computational tools or services. In this paper, we propose a solution to collect large- scale accessibility data of New York City (NYC) storefronts using a crowdsourcing approach on Google Street View (GSV) panoramas. We develop a web-based crowdsourcing application, DoorFront, which enables volunteers not only to remotely label storefront accessibility data on GSV images, but also to validate the labeling result to ensure high data quality. In order to study the usability and user experience of our application, an informal beta-test is conducted and a user experience survey is designed for testing volunteers. The user feedback is very positive and indicates the high potential and usability of the proposed application. 
    more » « less
  4. null (Ed.)
  5. null (Ed.)
    We consider a system consisting of a library of time-varying files, a server that at all times observes the current version of all files, and a cache that at the beginning stores the current versions of all files but afterwards has to update these files from the server. Unlike previous works, the update duration is not constant but depends on the file and its Age of Information (AoI), i.e., of the time elapsed since it was last updated. The goal of this work is to design an update policy that minimizes the average AoI of all files with respect to a given popularity distribution. Actually a relaxed problem, close to the original optimization problem, is solved and a practical update policy is derived. The update policy relies on the file popularity and on the functions that characterize the update durations of the files depending on their AoI. Numerical simulations show a significant improvement of this new update policy compared to the so-called square-root policy that is optimal under file-independent and constant update durations. 
    more » « less