skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Tang, Houjun"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Parallel I/O is an effective method to optimize data movement between memory and storage for many scientific applications. Poor performance of traditional disk-based file systems has led to the design of I/O libraries which take advantage of faster memory layers, such as on-node memory, present in high-performance computing (HPC) systems. By allowing caching and prefetching of data for applications alternating computation and I/O phases, a faster memory layer also provides opportunities for hiding the latency of I/O phases by overlapping them with computation phases, a technique called asynchronous I/O. Since asynchronous parallel I/O in HPC systems is still in the initial stages of development, there hasn't been a systematic study of the factors affecting its performance.In this paper, we perform a systematic study of various factors affecting the performance and efficacy of asynchronous I/O, we develop a performance model to estimate the aggregate I/O bandwidth achievable by iterative applications using synchronous and asynchronous I/O based on past observations, and we evaluate the performance of the recently developed asynchronous I/O feature of a parallel I/O library (HDF5) using benchmarks and real-world science applications. Our study covers parallel file systems on two large-scale HPC systems: Summit and Cori, the former with a GPFS storage and the latter with a Lustre parallel file system. 
    more » « less
  2. Lossy compression is one of the most efficient solutions to reduce storage overhead and improve I/O performance for HPC applications. However, existing parallel I/O libraries cannot fully utilize lossy compression to accelerate parallel write due to the lack of deep understanding on compression-write performance. To this end, we propose to deeply integrate predictive lossy compression with HDF5 to significantly improve the parallel-write performance. Specifically, we propose analytical models to predict the time of compression and parallel write before the actual compression to enable compression-write overlapping. We also introduce an extra space in the process to handle possible data overflows resulting from prediction uncertainty in compression ratios. Moreover, we propose an optimization to reorder the compression tasks to increase the overlapping efficiency. Experiments with up to 4,096 cores from Summit show that our solution improves the write performance by up to 4.5× and 2.9× over the non-compression and lossy compression solutions, respectively, with only 1.5% storage overhead (compared to original data) on two real-world HPC applications. 
    more » « less