skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Tang, Maureen_H"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract This study demonstrates fluorine‐free cross‐linked (meth)acrylate polymers as alternatives to polyvinylidene fluoride (PVDF) in LiNi0.33Mn0.33Co0.33O2(NMC111) cathodes. We determine the effects of thermal initiator content, polymer content, and curing environment for two polymer chemistries: a flexible acrylate polymer, and a stiff methacrylate polymer. Electrodes are manufactured and tested for final electrochemical performance and mechanical properties. The results show that the flexible acrylate polymer exhibits higher rate capability compared to the stiff methacrylate polymer because calendering fractures the brittle network of stiff polymer. Electrode adhesion to the current collector and cohesion between particles are found to be a strong function of thermal initiator ratio and oxygen inhibition. Furthermore, there exists an optimal binder concentration that maximizes rate capability performance. Under the right conditions, the two polymers exhibit comparable performance to PVDF electrodes. These results provide important implications for designing cross‐linked polymers as cathode binder alternatives to PVDF. 
    more » « less