- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0002000001000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Kolmanovsky, Ilya (3)
-
Li, Nan (3)
-
Tang, Sunbochen (3)
-
Zidek, Robert (2)
-
Zidek, Robert A. (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Tang, Sunbochen; Li, Nan; Kolmanovsky, Ilya; Zidek, Robert (, Proceedings of 2021 60th IEEE Conference on Decision and Control (CDC))In this paper, we propose a convex optimization approach to chance-constrained drift counteraction optimal control (DCOC) problems for linear systems with additive stochastic disturbances. Chance-constrained DCOC aims to compute an optimal control law to maximize the time duration before the probability of violating a prescribed set of constraints can no longer be maintained to be below a specified risk level. While conventional approaches to this problem involve solving a mixed-integer programming problem, we show that an optimal solution to the problem can also be found by solving a convex second-order cone programming problem without integer variables. We illustrate the application of chance-constrained DCOC to an automotive adaptive cruise control example.more » « less
-
Tang, Sunbochen; Li, Nan; Kolmanovsky, Ilya; Zidek, Robert (, Proceedings of 2021 American Control Conference)Drift counteraction optimal control (DCOC) aims at optimizing control to maximize the time (or a yield) until the system trajectory exits a prescribed set, which may represent safety constraints, operating limits, and/or efficiency requirements. To DCOC problems formulated in discrete time, conventional approaches were based on dynamic programming (DP) or mixed-integer programming (MIP), which could become computationally prohibitive for higher-order systems. In this paper, we propose a novel approach to discrete-time DCOC problems based on a nonlinear programming formulation with purely continuous variables. We show that this new continuous optimization-based approach leads to the same exit time as the conventional MIP-based approach, while being computationally more efficient than the latter. This is also illustrated by numerical examples representing the drift counteraction control for an indoor airship.more » « less
An official website of the United States government
