skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Tang, Yongchun"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In this paper, the solubility properties of the ionic liquid (IL), 1-ethyl-3-methylimidazolium tetrafluoroborate ([EMIM][BF4]) were studied using a high-pressure, high-temperature set-up employing the pressure-drop technique. [EMIM][BF4] was selected for study because it is used as the sweep liquid in a membrane reactor (MR)-based methanol synthesis (MR-MeS) process recently proposed and studied by our group. The MR-MeS studies indicated high methanol (MeOH) solubilities in the IL under typical MeS reaction conditions, which then motivated this study to measure such solubilities directly under non-reactive conditions to validate the findings of the MR study. In addition, during the MR-MeS studies a concern existed about the solubility of CO2 in [EMIM][BF4], since it is a reactant in the MeS process and its dissolution in the sweep liquid would be detrimental for reactor performance. Studies, therefore, were also carried out to investigate the solubility of CO2, in addition to MeOH, in the IL. Our investigation indicates that though CO2 solubilities in the [EMIM][BF4] are high at room temperature, they become negligible at the typical MeS operating conditions (i.e., temperatures above 200 ⁰C). 
    more » « less