skip to main content


Search for: All records

Creators/Authors contains: "Tantillo, Dean J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available April 1, 2025
  2. Abstract

    Asymmetric catalysis is an advanced area of chemical synthesis, but the handling of abundantly available, purely aliphatic hydrocarbons has proven to be challenging. Typically, heteroatoms or aromatic substructures are required in the substrates and reagents to facilitate an efficient interaction with the chiral catalyst. Confined acids have recently been introduced as tools for homogenous asymmetric catalysis, specifically to enable the processing of small unbiased substrates1. However, asymmetric reactions in which both substrate and product are purely aliphatic hydrocarbons have not previously been catalysed by such super strong and confined acids. We describe here an imidodiphosphorimidate-catalysed asymmetric Wagner–Meerwein shift of aliphatic alkenyl cycloalkanes to cycloalkenes with excellent regio- and enantioselectivity. Despite their long history and high relevance for chemical synthesis and biosynthesis, Wagner–Meerwein reactions utilizing purely aliphatic hydrocarbons, such as those originally reported by Wagner and Meerwein, had previously eluded asymmetric catalysis.

     
    more » « less
    Free, publicly-accessible full text available January 11, 2025
  3. Abstract

    Stereoselective Zweifel olefination using boronate complexes carrying two different reactive πsystems was achieved to synthesize vinyl heteroarenes and conjugated 1,3‐dienes in good yield and up to 100 % stereoselectivity, which remains unexplored until now. Most importantly, we report the unprecedented formation ofEvs.Z‐vinyl heteroarenes for different heteroarenes under identical conditions. Density functional theory (DFT) investigations unveil the mechanistic dichotomy between olefin and heteroarene activation followed by 1,2‐migration, leading toEorZ‐vinyl heteroarenes respectively. We also report a previously unknown reversal of stereoselectivity by using 2,3‐Dichloro‐5,6‐dicyano‐1,4‐benzoquinone (DDQ) as an electrophile. The Zweifel olefination using a boronate complex that carries two different olefins was previously unexplored due to significant challenges associated with the site‐selective activation of olefins. We have solved this problem and reported the site‐selective activation of olefins for the stereoselective synthesis of 1,3‐dienes.

     
    more » « less
  4. Substrates engineered to undergo a 1,4-C–H insertion to yield benzocyclobutenes resulted in a novel elimination reaction to yieldortho-quinone dimethide (o-QDM) products that undergo Diels–Alder or hetero-Diels–Alder cycloadditions.

     
    more » « less
  5. Abstract

    Density functional theory was used to elucidate the mechanism and the pericyclicity of chromium‐catalyzed bicyclization reactions that purportedly involve 8‐electron electrocyclization steps. Our computational results indicate that these reactions do indeed proceed via 8‐electron electrocyclization rather than an alternative pathway involving 4‐electron electrocyclization followed by Cope rearrangement. The role of C=[M] groups on the electrocyclization, specifically its pericyclicity, was examined in detail using modern theoretical tools.

     
    more » « less