Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We study optimal design problems in which the goal is to choose a set of linear measurements to obtain the most accurate estimate of an unknown vector. We study the [Formula: see text]-optimal design variant where the objective is to minimize the average variance of the error in the maximum likelihood estimate of the vector being measured. We introduce the proportional volume sampling algorithm to obtain nearly optimal bounds in the asymptotic regime when the number [Formula: see text] of measurements made is significantly larger than the dimension [Formula: see text] and obtain the first approximation algorithms whose approximation factor does not degrade with the number of possible measurements when [Formula: see text] is small. The algorithm also gives approximation guarantees for other optimal design objectives such as [Formula: see text]-optimality and the generalized ratio objective, matching or improving the previously best-known results. We further show that bounds similar to ours cannot be obtained for [Formula: see text]-optimal design and that [Formula: see text]-optimal design is NP-hard to approximate within a fixed constant when [Formula: see text].more » « less
-
Tsihrintzis, George A.; Virvou, Maria; Hatzilygeroudis, Ioannis (Ed.)We introduce the DP-auto-GAN framework for synthetic data generation, which combines the low dimensional representation of autoencoders with the flexibility of Generative Adversarial Networks (GANs). This framework can be used to take in raw sensitive data and privately train a model for generating synthetic data that will satisfy similar statistical properties as the original data. This learned model can generate an arbitrary amount of synthetic data, which can then be freely shared due to the post-processing guarantee of differential privacy. Our framework is applicable to unlabeled mixed-type data, that may include binary, categorical, and real-valued data. We implement this framework on both binary data (MIMIC-III) and mixed-type data (ADULT), and compare its performance with existing private algorithms on metrics in unsupervised settings. We also introduce a new quantitative metric able to detect diversity, or lack thereof, of synthetic data.more » « less
-
Dimensionality reduction is a classical technique widely used for data analysis. One foundational instantiation is Principal Component Analysis (PCA), which minimizes the average reconstruction error. In this paper, we introduce the multi-criteria dimensionality reduction problem where we are given multiple objectives that need to be optimized simultaneously. As an application, our model captures several fairness criteria for dimensionality reduction such as the Fair-PCA problem introduced by Samadi et al. [NeurIPS18] and the Nash Social Welfare (NSW) problem. In the Fair-PCA problem, the input data is divided into k groups, and the goal is to find a single d-dimensional representation for all groups for which the maximum reconstruction error of any one group is minimized. In NSW the goal is to maximize the product of the individual variances of the groups achieved by the common low-dimensinal space. Our main result is an exact polynomial-time algorithm for the two-criteria dimensionality reduction problem when the two criteria are increasing concave functions. As an application of this result, we obtain a polynomial time algorithm for Fair-PCA for k=2 groups, resolving an open problem of Samadi et al.[NeurIPS18], and a polynomial time algorithm for NSW objective for k=2 groups. We also give approximation algorithms for k>2. Our technical contribution in the above results is to prove new low-rank properties of extreme point solutions to semi-definite programs. We conclude with the results of several experiments indicating improved performance and generalized application of our algorithm on real-world datasets.more » « less
-
null (Ed.)Dimensionality reduction is a classical technique widely used for data analysis. One foundational instantiation is Principal Component Analysis (PCA), which minimizes the average reconstruction error. In this paper, we introduce the multi-criteria dimensionality reduction problem where we are given multiple objectives that need to be optimized simultaneously. As an application, our model captures several fairness criteria for dimensionality reduction such as the Fair-PCA problem introduced by Samadi et al. [NeurIPS18] and the Nash Social Welfare (NSW) problem. In the Fair-PCA problem, the input data is divided into k groups, and the goal is to find a single d-dimensional representation for all groups for which the maximum reconstruction error of any one group is minimized. In NSW the goal is to maximize the product of the individual variances of the groups achieved by the common low-dimensinal space. Our main result is an exact polynomial-time algorithm for the two-criteria dimensionality reduction problem when the two criteria are increasing concave functions. As an application of this result, we obtain a polynomial time algorithm for Fair-PCA for k=2 groups, resolving an open problem of Samadi et al.[NeurIPS18], and a polynomial time algorithm for NSW objective for k=2 groups. We also give approximation algorithms for k>2. Our technical contribution in the above results is to prove new low-rank properties of extreme point solutions to semi-definite programs. We conclude with the results of several experiments indicating improved performance and generalized application of our algorithm on real-world datasets.more » « less