skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Tao, Qi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In this paper, we propose a local discontinuous Galerkin (LDG) method for the Novikov equation that contains cubic nonlinear high-order derivatives. Flux correction techniques are used to ensure the stability of the numerical scheme. The H 1 H^1 -norm stability of the general solution and the error estimate for smooth solutions without using any priori assumptions are presented. Numerical examples demonstrate the accuracy and capability of the LDG method for solving the Novikov equation. 
    more » « less
    Free, publicly-accessible full text available July 1, 2026
  2. In this paper, we study the ultraweak-local discontinuous Galerkin (UWLDG) method for time-dependent linear fourth-order problems with four types of boundary conditions. In one dimension and two dimensions, stability and optimal error estimates of order k + 1 k+1 are derived for the UWLDG scheme with polynomials of degree at most k k ( k ≥<#comment/> 1 k\ge 1 ) for solving initial-boundary value problems. The main difficulties are the design of suitable penalty terms at the boundary for numerical fluxes and the construction of projections. More precisely, in two dimensions with the Dirichlet boundary condition, an elaborate projection of the exact boundary condition is proposed as the boundary flux, which, in combination with some proper penalty terms, leads to the stability and optimal error estimates. For other three types of boundary conditions, optimal error estimates can also be proved for fluxes without any penalty terms when special projections are designed to match different boundary conditions. Numerical experiments are presented to confirm the sharpness of theoretical results. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  3. null (Ed.)
    In this paper, we study superconvergence properties of the ultraweak-local discontinuous Galerkin (UWLDG) method in Tao et al. [To appear in Math. Comput. DOI: https://doi.org/10.1090/mcom/3562 (2020).] for an one-dimensional linear fourth-order equation. With special initial discretizations, we prove the numerical solution of the semi-discrete UWLDG scheme superconverges to a special projection of the exact solution. The order of this superconvergence is proved to be k + min(3, k ) when piecewise ℙ k polynomials with k ≥ 2 are used. We also prove a 2 k -th order superconvergence rate for the cell averages and for the function values and derivatives of the UWLDG approximation at cell boundaries. Moreover, we prove superconvergence of ( k + 2)-th and ( k + 1)-th order of the function values and the first order derivatives of the UWLDG solution at a class of special quadrature points, respectively. Our proof is valid for arbitrary non-uniform regular meshes and for arbitrary k ≥ 2. Numerical experiments verify that all theoretical findings are sharp. 
    more » « less