skip to main content

Search for: All records

Creators/Authors contains: "Tappa, Michael J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The influence of mineral dust deposition on soil formation in the mountain critical zone was evaluated at six sites in southwestern North America. Passive samplers collected dust for 2 years, and representative soil and rock were gathered in the vicinity of each dust sampler. All materials (dust, soil, and rock) were analyzed to determine their mineralogy (with X-ray diffraction), geochemistry (with inductively coupled plasma mass spectrometry (ICP-MS)), and radiogenic isotope fingerprint (87Sr/86Sr and εNd). In addition, the grain size distribution of dust and soil samples was determined with laser scattering, and standard soil fertility analysis was conducted on the soil samples. Results reveal that minerals present in the dust but absent in the local bedrock are detectable in the soil. Similarly, the geochemistry and isotopic fingerprint of soil samples are more similar to dust than to local bedrock. End-member mixing models evaluating soil as a mixture of dust and rock suggest that the fine fractions of the sampled soils are dominated by dust deposition, with dust contents approaching 100 %. Dust content is somewhat higher in soils compared to bedrock types more resistant to weathering. These results emphasize the dominant control that mineral dust deposition can exert on pedogenesis in the mountain critical zone.

    more » « less
    Free, publicly-accessible full text available January 1, 2025
  2. Abstract

    Mountain environments are profoundly impacted by the deposition of mineral dust, yet the degree to which this material is far-traveled or intra-regional is typically unclear. This distinction is fundamental to model future changes in mountain geoecosystems resulting from climatic or anthropogenic forcing in dust source regions. We address this question with a network of 17 passive dust samplers installed in primarily mountain locations in Utah, Nevada, and Idaho between October, 2020 and October 2021. For each collector, the dust deposition rate was calculated, and the physical and chemical properties of the dust were constrained. Results were combined with backward trajectory modeling to identify the geologic characteristics of the area over which air passed most frequently in route to each collector (the ‘hot spot’). Dust properties differ significantly between collectors, hot spots for many collectors are spatially discrete, and the dominant geologies in the hot spots corresponding to each collector vary considerably. These results support the hypothesis that the majority of the dust deposited in the areas we studied is sourced from arid lowlands in the surrounding region.

    more » « less
  3. null (Ed.)