- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
03000000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Dixon, Lucas (3)
-
Hua, Yiqing (3)
-
Chang, Jonathan P. (2)
-
Danescu-Niculescu-Mizil, Cristian (2)
-
Tahin, Nithum (2)
-
Taraborelli, Dario. (2)
-
Zhang, Justine (2)
-
Sorensen, Jeffery (1)
-
Taraborelli, Dario (1)
-
Thain, Nithum (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
One of the main challenges online social systems face is the prevalence of antisocial behavior, such as harassment and personal attacks. In this work, we introduce the task of predicting from the very start of a conversation whether it will get out of hand. As opposed to detecting undesirable behavior after the fact, this task aims to enable early, actionable prediction at a time when the conversation might still be salvaged. To this end, we develop a framework for capturing pragmatic devices---such as politeness strategies and rhetorical prompts---used to start a conversation, and analyze their relation to its future trajectory. Applying this framework in a controlled setting, we demonstrate the feasibility of detecting early warning signs of antisocial behavior in online discussions.more » « less
-
Hua, Yiqing ; Danescu-Niculescu-Mizil, Cristian ; Taraborelli, Dario ; Thain, Nithum ; Sorensen, Jeffery ; Dixon, Lucas ( , Proceedings of the Conference on Empirical Methods in Natural Language Processing)We present a corpus that encompasses the complete history of conversations between contributors to Wikipedia, one of the largest online collaborative communities. By recording the intermediate states of conversations—including not only comments and replies, but also their modifications, deletions and restorations—this data offers an unprecedented view of online conversation. This level of detail supports new research questions pertaining to the process (and challenges) of large-scale online collaboration. We illustrate the corpus’ potential with two case studies that highlight new perspectives on earlier work. First, we explore how a person’s conversational behavior depends on how they relate to the discussion’s venue. Second, we show that community moderation of toxic behavior happens at a higher rate than previously estimated. Finally the reconstruction framework is designed to be language agnostic, and we show that it can extract high quality conversational data in both Chinese and English.more » « less
-
Zhang, Justine ; Chang, Jonathan P. ; Danescu-Niculescu-Mizil, Cristian ; Dixon, Lucas ; Hua, Yiqing ; Tahin, Nithum ; Taraborelli, Dario. ( , Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics.)One of the main challenges online social systems face is the prevalence of antisocial behavior, such as harassment and personal attacks. In this work, we introduce the task of predicting from the very start of a conversation whether it will get out of hand. As opposed to detecting undesirable behavior after the fact, this task aims to enable early, actionable prediction at a time when the conversation might still be salvaged. To this end, we develop a framework for capturing pragmatic devices---such as politeness strategies and rhetorical prompts---used to start a conversation, and analyze their relation to its future trajectory. Applying this framework in a controlled setting, we demonstrate the feasibility of detecting early warning signs of antisocial behavior in online discussions.more » « less