Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract High-resolution millimeter-wave imaging (HR-MMWI), with its high discrimination contrast and sufficient penetration depth, can potentially provide affordable tissue diagnostic information noninvasively. In this study, we evaluate the application of a real-time system of HR-MMWI for in-vivo skin cancer diagnosis. 136 benign and malignant skin lesions from 71 patients, including melanoma, basal cell carcinoma, squamous cell carcinoma, actinic keratosis, melanocytic nevi, angiokeratoma, dermatofibroma, solar lentigo, and seborrheic keratosis were measured. Lesions were classified using a 3-D principal component analysis followed by five classifiers including linear discriminant analysis (LDA), K-nearest neighbor (KNN) with different K-values, linear and Gaussian support vector machine (LSVM and GSVM) with different margin factors, and multilayer perception (MLP). Our results suggested that the best classification was achieved by using five PCA components followed by MLP with 97% sensitivity and 98% specificity. Our findings establish that real-time millimeter-wave imaging can be used to distinguish malignant tissues from benign skin lesions with high diagnostic accuracy comparable with clinical examination and other methods.more » « less
-
Abstract Recent research has shown promising results for the detection of aortic stenosis (AS) using cardio-mechanical signals. However, they are limited by two main factors: lacking physical explanations for decision-making on the existence of AS, and the need for auxiliary signals. The main goal of this paper is to address these shortcomings through a wearable inertial measurement unit (IMU), where the physical causes of AS are determined from IMU readings. To this end, we develop a framework based on seismo-cardiogram (SCG) and gyro-cardiogram (GCG) morphologies, where highly-optimized algorithms are designed to extract features deemed potentially relevant to AS. Extracted features are then analyzed through machine learning techniques for AS diagnosis. It is demonstrated that AS could be detected with 95.49–100.00% confidence. Based on the ablation study on the feature space, the GCG time-domain feature space holds higher consistency, i.e., 95.19–100.00%, with the presence of AS than HRV parameters with a low contribution of 66.00–80.00%. Furthermore, the robustness of the proposed method is evaluated by conducting analyses on the classification of the AS severity level. These analyses are resulted in a high confidence of 92.29%, demonstrating the reliability of the proposed framework. Additionally, game theory-based approaches are employed to rank the top features, among which GCG time-domain features are found to be highly consistent with both the occurrence and severity level of AS. The proposed framework contributes to reliable, low-cost wearable cardiac monitoring due to accurate performance and usage of solitary inertial sensors.more » « less
-
This paper describes an open-access database for seismo-cardiogram (SCG) and gyro-cardiogram (GCG) signals. The archive comprises SCG and GCG recordings sourced from and processed at multiple sites worldwide, including Columbia University Medical Center and Stevens Institute of Technology in the United States, as well as Southeast University, Nanjing Medical University, and the first affiliated hospital of Nanjing Medical University in China. It includes electrocardiogram (ECG), SCG, and GCG recordings collected from 100 patients with various conditions of valvular heart diseases such as aortic and mitral stenosis. The recordings were collected from clinical environments with the same types of wearable sensor patch. Besides the raw recordings of ECG, SCG, and GCG signals, a set of hand-corrected fiducial point annotations is provided by manually checking the results of the annotated algorithm. The database also includes relevant echocardiogram parameters associated with each subject such as ejection fraction, valve area, and mean gradient pressure.more » « less