skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, July 11 until 2:00 AM ET on Saturday, July 12 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Taylor, D. Lee"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Root-associated fungi play a critical role in plant ecophysiology, growth and subsequent responses to disturbances, so they are thought to be particularly instrumental in shaping vegetation dynamics after fire in the boreal forest. Despite increasing data on the distribution of fungal taxonomic diversity through space and time in boreal ecosystems, there are knowledge gaps with respect to linking these patterns to ecosystem function and process. Here we explore what is currently known about postfire root-associated fungi in the boreal forest. We focus on wildfire impacts on mycorrhizal fungi and the relationships between plant–fungal interactions and forest recovery in an effort to explore whether postfire mycorrhizal dynamics underlie plant–soil feedbacks that may influence fire-facilitated vegetation shifts. We characterize the mechanisms by which wildfire influences root-associated fungal community assembly. We identify scenarios of postfire plant–fungal interactions that represent putative positive and negative plant–soil feedbacks that may impact successional trajectories. We highlight the need for empirical field observations and experiments to inform our ability to translate patterns of postfire root-associated fungal diversity to ecological function and application in models. We suggest that understanding postfire interactions between root-associated fungi and plants is critical to predict fire effects on vegetation patterns, ecosystem function, future landscape flammability and feedbacks to climate. 
    more » « less
  2. Summary Root‐associated fungi (RAF) and root traits regulate plant acquisition of nitrogen (N), which is limiting to growth in Arctic ecosystems. With anthropogenic warming, a new N source from thawing permafrost has the potential to change vegetation composition and increase productivity, influencing climate feedbacks. Yet, the impact of warming on tundra plant root traits, RAF, and access to permafrost N is uncertain.We investigated the relationships between RAF, species‐specific root traits, and uptake of N from the permafrost boundary by tundra plants experimentally warmed for nearly three decades at Toolik Lake, Alaska.Warming increased acquisitive root traits of nonmycorrhizal and mycorrhizal plants. RAF community composition of ericoid (ERM) but not ectomycorrhizal (ECM) shrubs was impacted by warming and correlated with root traits. RAF taxa in the dark septate endophyte, ERM, and ECM guilds strongly correlated with permafrost N uptake for ECM and ERM shrubs. Overall, a greater proportion of variation in permafrost N uptake was related to root traits than RAF.Our findings suggest that warming Arctic ecosystems will result in interactions between roots, RAF, and newly thawed permafrost that may strongly impact feedbacks to the climate system through mechanisms of carbon and N cycling. 
    more » « less
  3. Abstract Fungal symbionts can buffer plants from environmental extremes and may affect host capacities to acclimate, adapt, or redistribute under environmental change; however, the distributions of fungal symbionts along abiotic gradients are poorly described. Fungal mutualists should be the most beneficial in abiotically stressful environments, and the structure of networks of plant-fungal interactions likely shift along gradients, even when fungal community composition does not track environmental stress. We sampled 634 unique combinations of fungal endophytes and mycorrhizal fungi, grass species identities, and sampling locations from 66 sites across six replicate altitudinal gradients in the western Colorado Rocky Mountains. The diversity and composition of leaf endophytic, root endophytic, and arbuscular mycorrhizal (AM) fungal guilds and the overall abundance of fungal functional groups (pathogens, saprotrophs, mutualists) tracked grass host identity more closely than elevation. Network structures of root endophytes become more nested and less specialized at higher elevations, but network structures of other fungal guilds did not vary with elevation. Overall, grass species identity had overriding influence on the diversity and composition of above- and belowground fungal endophytes and AM fungi, despite large environmental variation. Therefore, in our system climate change may rarely directly affect fungal symbionts. Instead, fungal symbiont distributions will most likely track the range dynamics of host grasses. 
    more » « less
  4. null (Ed.)
  5. Gao, Cheng (Ed.)
  6. Because of its high phosphorus (P) demands, it is likely that the abundance, distribution, and N-fixing capacity of Alnus in boreal forests are tightly coupled with P availability and the mobilization and uptake of soil P via ectomycorrhizal fungi (EMF). We examined whether Alnus shifts EMF communities in coordination with increasingly more complex organic P forms across a 200-year-old successional sequence along the Tanana River in interior Alaska. Root-tip activities of acid phosphatase, phosphodiesterase, and phytase of A. tenuifolia-associated EMF were positively intercorrelated but did not change in a predictable manner across the shrub, to hardwood to coniferous forest successional sequence. Approximately half of all Alnus roots were colonized by Alnicola and Tomentella taxa, and ordination analysis indicated that the EMF community on Alnus is a relatively distinct, host-specific group. Despite differences in the activities of the two Alnus dominants to mobilize acid phosphatase and phosphodiesterase, the root-tip activities of P-mobilizing enzymes of the Alnus-EMF community were not dramatically different from other co-occurring boreal plant hosts. This suggests that if Alnus has a greater influence on P cycling than other plant functional types, additional factors influencing P mobilization and uptake at the root and/or whole-plant level must be involved. 
    more » « less