skip to main content


Search for: All records

Creators/Authors contains: "Taylor, Gordon T."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Plastic substrates introduced to the environment during the Anthropocene have introduced new pathways for microbial selection and dispersal. Some plastic‐colonising microorganisms have adapted phenotypes for plastic degradation (selection), while the spatial transport (dispersal) potential of plastic colonisers remains controlled by polymer‐specific density, hydrography and currents. Plastic‐degrading enzyme abundances have recently been correlated with concentrations of plastic debris in open ocean environments, making it critical to better understand colonisation of hydrocarbon degraders with plastic degradation potential in urbanised watersheds where plastic pollution often originates. We found that microbial colonisation by reputed hydrocarbon degraders on microplastics (MPs) correlated with a spatial contaminant gradient (New York City/Long Island waterways), polymer types, temporal scales, microbial domains and putative cell activity (DNA vs. RNA). Hydrocarbon‐degrading taxa enriched on polyethylene and polyvinyl chloride substrates relative to other polymers and were more commonly recovered in samples proximal to New York City. These differences in MP colonisation could indicate phenotypic adaptation processes resulting from increased exposure to urban plastic runoff as well as differences in carbon bioavailability across polymer types. Shifts in MP community potential across urban coastal contaminant gradients and polymer types improve our understanding of environmental plastic discharge impacts toward biogeochemical cycling across the global ocean.

     
    more » « less
    Free, publicly-accessible full text available December 27, 2024
  2. Abstract

    Secondary metabolites play essential roles in ecological interactions and nutrient acquisition, and are of interest for their potential uses in medicine and biotechnology. Genome mining for biosynthetic gene clusters (BGCs) can be used for the discovery of new compounds. Here, we use metagenomics and metatranscriptomics to analyze BGCs in free-living and particle-associated microbial communities through the stratified water column of the Cariaco Basin, Venezuela. We recovered 565 bacterial and archaeal metagenome-assembled genomes (MAGs) and identified 1154 diverse BGCs. We show that differences in water redox potential and microbial lifestyle (particle-associated vs. free-living) are associated with variations in the predicted composition and production of secondary metabolites. Our results indicate that microbes, including understudied clades such as Planctomycetota, potentially produce a wide range of secondary metabolites in these anoxic/euxinic waters.

     
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  3. Abstract

    Predicting microbial metabolic rates and emergent biogeochemical fluxes remains challenging due to the many unknown population dynamical, physiological and reaction‐kinetic parameters and uncertainties in species composition. Here, we show that the need for these parameters can be eliminated when population dynamics and reaction kinetics operate at much shorter time scales than physical mixing processes. Such scenarios are widespread in poorly mixed water columns and sediments. In this ‘fast‐reaction‐transport’ (FRT) limit, all that is required for predictions are chemical boundary conditions, the physical mixing processes and reaction stoichiometries, while no knowledge of species composition, physiology or population/reaction kinetic parameters is needed. Using time‐series data spanning years 2001–2014 and depths 180–900 m across the permanently anoxic Cariaco Basin, we demonstrate that the FRT approach can accurately predict the dynamics of major electron donors and acceptors (Pearsonr ≥ 0.9 in all cases). Hence, many microbial processes in this system are largely transport limited and thus predictable regardless of species composition, population dynamics and kinetics. Our approach enables predictions for many systems in which microbial community dynamics and kinetics are unknown. Our findings also reveal a mechanism for the frequently observed decoupling between function and taxonomy in microbial systems.

     
    more » « less
  4. Abstract

    The near exponential proliferation of published Raman microspectroscopic applications over the last decade bears witness to the strengths and versatility of this technology. However, laser-induced fluorescence often severely impedes its application to biological samples. Here we report a new approach for near complete elimination of laser-induced background fluorescence in highly pigmented biological specimens (e.g., microalgae) enabling interrogation by Raman microspectroscopy. Our simple chemiphotobleaching method combines mild hydrogen peroxide oxidation with broad spectrum visible light irradiation of the entire specimen. This treatment permits observing intracellular distributions of macromolecular pools, isotopic tracers, and even viral propagation within cells previously not amenable to Raman microspectroscopic examination. Our approach demonstrates the potential for confocal Raman microspectroscopy becoming an indispensable tool to obtain spatially-resolved data on the chemical composition of highly fluorescent biological samples from individual cells to environmental samples.

     
    more » « less
  5. Abstract

    In lakes, seasonal phytoplankton blooms and allochthonous plant debris intensify particulate organic carbon fluxes to the lakebed. Microbes associated with these particles likely vary with organic substrate lability and redox conditions. To explore microbial compositional responses to these variables, we analyzed particle‐associated and free‐living assemblages in the permanently redox‐stratified Fayetteville Green Lake using 16 S rRNA amplicon sequencing during the peak and end of cyanobacterial and photoautotrophic sulfur bacterial blooms. Assemblage compositions were strongly influenced by redox conditions and particle association. Assemblage compositions varied seasonally above the lower oxycline boundary (summer—generalist heterotrophs; autumn—iron reducers and specialist heterotrophs), but not in the anoxic region below. Particle‐associated assemblages were less diverse than free‐living assemblages and were dominated by heterotrophs that putatively metabolize complex organic substrates, purple sulfur bacteria, sulfur‐cyclingDesulfocapsa, and eukaryotic algae. The least diverse particle‐associated assemblages occurred near the lower oxycline boundary, where microbial activities and abundances were highest, and anoxygenic photoautotrophs were enriched. The low‐diversity particle‐associated heterotrophs likely remineralize complex organic substrates, releasing simpler organic substrates to free‐living assemblages during transit, thereby influencing surrounding microbial diversity and function. Our results challenge the paradigm that phytoplankton from the shallow photic zone are the primary contributor to the vertical flux. We suggest that photoautotrophic prokaryotes from the deep photic zone contribute significantly to deep‐water carbon in this environment, and possibly in other oxygen‐deficient waters with sulfidic photic zones. Furthermore, results suggest that seasonally variable terrestrial carbon and metal inputs also influence microbial diversity and function in similar systems.

     
    more » « less
  6. Abstract

    Little is known about viruses in oxygen-deficient water columns (ODWCs). In surface ocean waters, viruses are known to act as gene vectors among susceptible hosts. Some of these genes may have metabolic functions and are thus termed auxiliary metabolic genes (AMGs). AMGs introduced to new hosts by viruses can enhance viral replication and/or potentially affect biogeochemical cycles by modulating key microbial pathways. Here we identify 748 viral populations that cluster into 94 genera along a vertical geochemical gradient in the Cariaco Basin, a permanently stratified and euxinic ocean basin. The viral communities in this ODWC appear to be relatively novel as 80 of these viral genera contained no reference viral sequences, likely due to the isolation and unique features of this system. We identify viral elements that encode AMGs implicated in distinctive processes, such as sulfur cycling, acetate fermentation, signal transduction, [Fe–S] formation, and N-glycosylation. These AMG-encoding viruses include two putative Mu-like viruses, and viral-like regions that may constitute degraded prophages that have been modified by transposable elements. Our results provide an insight into the ecological and biogeochemical impact of viruses oxygen-depleted and euxinic habitats.

     
    more » « less
  7. Abstract

    Cyanobacterial Harmful Algal Blooms (CyanoHABs) are expanding geographically in both fresh and marine water bodies due to coastal eutrophication and global climate change and are restructuring the microbial ecology of these systems. Cyanobacterial autofluorescence can pose a significant impediment to accurately identifying prokaryotic taxonomic groups in environmental samples using fluorescence in situ hybridization (FISH). This can hinder our ability to accurately quantify, and therefore fully understand ecological changes. As abundances of FISH target cells and autofluorescent cells can often be of the same the order of magnitude, simply subtracting average autofluorescent cell concentrations—determined from enumerating unhybridized samples—yields apparent concentrations of target cells with unacceptably large analytical uncertainty. Here we present a CuSO4/EtOH chemical pretreatment protocol that significantly reduces undesirable autofluorescence in hybridized environmental samples. We apply a novel data filtration routine to FISH images that efficiently removes residual autofluorescent cells from final cell counts. We then subject images to an automated image analysis routine that accurately enumerates probe‐positive cells. This method is inexpensive and easy to implement as part of a routine FISH workflow. By applying this method to cyanobacteria rich samples, we can better understand how microbial community changes are contributing to globally changing biogeochemical cycles.

     
    more » « less
  8. Summary

    Genetic markers and geochemical assays of microbial nitrogen cycling processes, including autotrophic and heterotrophic denitrification, anammox, ammonia oxidation, and nitrite oxidation, were examined across the oxycline, suboxic, and anoxic zones of the Cariaco Basin, Venezuela. Ammonia and nitrite oxidation genes were expressed through the entire gradient. Transcripts associated with autotrophic and heterotrophic denitrifiers were mostly confined to the suboxic zone and below but were also present in particles in the oxycline. Anammox genes and transcripts were detected over a narrow depth range near the bottom of the suboxic zone and coincided with secondary NO2maxima and available NH4+. Dissolved inorganic nitrogen (DIN) amendment incubations and comparisons between our sampling campaigns suggested that denitrifier activity may be closely coupled with NO3availability. Expression of denitrification genes at depths of high rates of chemoautotrophic carbon fixation and phylogenetic analyses of nitrogen cycling genes and transcripts indicated a diverse array of denitrifiers, including chemoautotrophs capable of using NO3to oxidize reduced sulfur species. Thus, results suggest that the Cariaco Basin nitrogen cycle is influenced by autotrophic carbon cycling in addition to organic matter oxidation and anammox.

     
    more » « less
  9. Abstract

    A chemoautotrophy maximum is present in many anoxic basins at the sulfidic layer's upper boundary, but the factors controlling this feature are poorly understood. In 13 of 31 cruises to the Cariaco Basin, particulate organic carbon (POC) was enriched in13C (δ13CPOCas high as −16‰) within the oxic/sulfidic transition compared to photic zone values (−23 to −26‰). During “heavy” cruises, fluxes of O2and [NO3+ NO2] to the oxic/sulfidic interface were significantly lower than during “light” cruises. Cruises with isotopically heavy POC were more common between 2013 and 2015 when suspended particles below the photic zone tended to be nitrogen rich compared to later cruises. Within the chemoautotrophic layer, nitrogen‐rich particles (molar ratio C/N< 10) were more likely to be13C‐enriched than nitrogen‐poor particles, implying that these inventories were dominated by living cells and fresh detritus rather than laterally transported or extensively decomposed detritus. During heavy cruises,13C enrichments persisted to 1,300 m, providing the first evidence of downward transport of chemoautotrophically produced POC. Dissolved inorganic carbon assimilation during heavy cruises (n= 3) was faster and occurred deeper than during light cruises (n= 2). Metagenomics data from the chemoautotrophic layer during two cruises support prevalence of microorganisms carrying RuBisCO form II genes, which encode a carbon fixation enzyme that discriminates less against heavy isotopes than most other carbon fixation enzymes, and metatranscriptomics data indicate that higher expression of form II RuBisCO genes during the heavy cruises at depths where essential reactants coexist are responsible for the isotopically heavier POC.

     
    more » « less
  10. Abstract

    Permanently anoxic regions in the ocean are widespread and exhibit unique microbial metabolic activity exerting substantial influence on global elemental cycles and climate. Reconstructing microbial metabolic activity rates in these regions has been challenging, due to the technical difficulty of direct rate measurements. In Cariaco Basin, which is the largest permanently anoxic marine basin and an important model system for geobiology, long‐term monitoring has yielded time series for the concentrations of biologically important compounds; however, the underlying metabolite fluxes remain poorly quantified. Here, we present a computational approach for reconstructing vertical fluxes and in situ net production/consumption rates from chemical concentration data, based on a 1‐dimensional time‐dependent diffusive transport model that includes adaptive penalization of overfitting. We use this approach to estimate spatiotemporally resolved fluxes of oxygen, nitrate, hydrogen sulfide, ammonium, methane, and phosphate within the sub‐euphotic Cariaco Basin water column (depths 150–900 m, years 2001–2014) and to identify hotspots of microbial chemolithotrophic activity. Predictions of the fitted models are in excellent agreement with the data and substantially expand our knowledge of the geobiology in Cariaco Basin. In particular, we find that the diffusivity, and consequently fluxes of major reductants such as hydrogen sulfide, and methane, is about two orders of magnitude greater than previously estimated, thus resolving a long‐standing apparent conundrum between electron donor fluxes and measured dark carbon assimilation rates.

     
    more » « less