skip to main content

Search for: All records

Creators/Authors contains: "Taylor, J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Observations of nanoparticle superlattice formation over minutes during colloidal nanoparticle synthesis elude description by conventional understanding of self-assembly, which theorizes superlattices require extended formation times to allow for diffusively driven annealing of packing defects. It remains unclear how nanoparticle position annealing occurs on such short time scales despite the rapid superlattice growth kinetics. Here we utilize liquid phase transmission electron microscopy to directly image the self-assembly of platinum nanoparticles into close packed supraparticles over tens of seconds during nanoparticle synthesis. Electron-beam induced reduction of an aqueous platinum precursor formed monodisperse 2–3 nm platinum nanoparticles that simultaneously self-assembled over tens ofmore »seconds into 3D supraparticles, some of which showed crystalline ordered domains. Experimentally varying the interparticle interactions ( e.g. , electrostatic, steric interactions) by changing precursor chemistry revealed that supraparticle formation was driven by weak attractive van der Waals forces balanced by short ranged repulsive steric interactions. Growth kinetic measurements and an interparticle interaction model demonstrated that nanoparticle surface diffusion rates on the supraparticles were orders of magnitude faster than nanoparticle attachment, enabling nanoparticles to find high coordination binding sites unimpeded by incoming particles. These results reconcile rapid self-assembly of supraparticles with the conventional self-assembly paradigm in which nanocrystal position annealing by surface diffusion occurs on a significantly shorter time scale than nanocrystal attachment.« less
    Free, publicly-accessible full text available January 6, 2023
  2. Few anions exhibit electronically excited states, and, if they do, the one or two possible excitations typically transpire beyond the visible spectrum into the near-infrared. These few, red-shifted electronic absorption features make anions tantalizing candidates as carriers of the diffuse interstellar bands (DIBs), a series of mostly unknown, astronomically ubiquitous absorption features documented for over a century. The recent interstellar detection of benzonitrile implies that cyano-functionalized polycyclic aromatic hydrocarbon (PAH) anions may be present in space. The presently reported quantum chemical work explores the electronic properties of deprotonated benzene, naphthalene, and anthracene anions functionalized with a single cyano group. Bothmore »the absorption and emission properties of the electronically excited states are explored. The findings show that the larger anions absorption and emission energies possess both valence and dipole bound excitations in the 450–900 nm range with oscillator strengths for both types of >1×10−4. The valence and dipole bound excited state transitions will produce slightly altered substructure from one another making them appear to originate with different molecules. The known interstellar presence of related molecules, the two differing natures of the excited states for each, and the wavelength range of peaks for these cyano-functionalized PAH anions are coincident with DIB properties. Finally, the methods utilized appear to be able to predict the presence of dipole-bound excited states to within a 1.0 meV window relative to the electron binding energy.« less
  3. Recent advances in climate research have discovered that permafrost is particularly vulnerable to the changes occurring in the atmosphere and climate, especially in Alaska where 85% of the land is underlain by mostly discontinuous permafrost. As permafrost thaws, research has shown that natural and anthropogenic soil disturbance causes microbial communities to undergo shifts in membership composition and biomass, as well as in functional diversity. Boreal forests are home to many plants that are integral to the subsistence diets of many Alaska Native communities. Yet, it is unclear how the observed shifts in soil microbes can affect above ground plant communitiesmore »that are relied on as a major source of food. In this study, we tested the hypothesis that microbial communities associated with permafrost thaw affect plant productivity by growing five plant species found in Boreal forests and Tundra ecosystems, including low-bush cranberry and bog blueberry, with microbial communities from the active layer soils of a permafrost thaw gradient. We found that plant productivity was significantly affected by the microbial soil inoculants. Plants inoculated with communities from above thawing permafrost showed decreased productivity compared to plants inoculated with microbes from undisturbed soils. We used metagenomic sequencing to determine that microbial communities from disturbed soils above thawing permafrost differ in taxonomy from microbial communities in undisturbed soils above intact permafrost. The combination of these results indicates that a decrease in plant productivity can be linked to soil disturbance driven changes in microbial community membership and abundance. These data contribute to an understanding of how microbial communities can be affected by soil disturbance and climate change, and how those community shifts can further influence plant productivity in Boreal forests and more broadly, ecosystem health.« less
  4. Faust, K ; Kanjanabootra, S (Ed.)
    As climate change impacts intensify, communities in rural Alaska are undergoing and adapting to changes to infrastructure from increased permafrost thawing, flooding, and coastal erosion. Climate change adaptation, defined as a process, action, or outcome in a system to better adjust to actual or expected climate change impacts, is needed to address significant structural failures and safety concerns. Despite the recognition of the need for support from stakeholders and adaptation of infrastructure, the level of adaptation activity remains limited and inconsistent across regions and communities in rural Alaska. We address this need by identifying drivers and barriers of adaptation basedmore »on stakeholder perspectives (N=25). Stakeholders included people who work for government agencies, non-profits, engineering firms, or academic institutions in rural Alaska. Results show that strong community leadership and flexibility of funding conditions were drivers to adaptation of infrastructure. Further, results show that the high cost of technology and infrastructure and lack of access to and stipulations on funding were barriers to adaptation of infrastructure. These drivers and barriers emphasize the importance of adaptation processes that effectively accommodate the unique contexts of addressing impacts in rural Alaska. Results demonstrate the need for national adaptation funding and policy that encourages local decision-making power. Specifically, results outline the need for adaptation funding and policy that supports the collaboration of Alaska based institutions and rural Alaska communities in adaptation.« less
  5. Sustainable development (SD) policies targeting marine economic sectors, designed to alleviate poverty and conserve marine ecosystems, have proliferated in recent years. Many developing countries are providing poor fishing households with new fishing boats (fishing capital) that can be used further offshore as a means to improve incomes and relieve fishing pressure on nearshore fish stocks. These kinds of policies are a marine variant of traditional SD policies focused on agriculture. Here, we evaluate ex ante economic and environmental impacts of provisions of fishing and agricultural capital, with and without enforcement of fishing regulations that prohibit the use of larger vesselsmore »in nearshore habitats. Combining methods from development economics, natural resource economics, and marine ecology, we use a unique dataset and modeling framework to account for linkages between households, business sectors, markets, and local fish stocks. We show that the policies investing capital in local marine fisheries or agricultural sectors achieve income gains for targeted households, but knock-on effects lead to increased harvest of nearshore fish, making them unlikely to achieve conservation objectives in rural coastal economies. However, pairing an agriculture stimulus with increasing enforcement of existing fisheries’ regulations may lead to a win–win situation. While marine-based policies could be an important tool to achieve two of the United Nations Sustainable Development Goals (alleviate poverty and protect vulnerable marine resources), their success is by no means assured and requires consideration of land and marine socioeconomic linkages inherent in rural economies.« less
  6. In this work, we investigate the role of folding/unfolding equilibrium in protein aggregation and formation of a gel network. Near the neutral pH and at a low buffer ionic strength, the formation of the gel network around unfolding conditions prevents investigations of protein aggregation. In this study, by deploying the fact that in lysozyme solutions the time of folding/unfolding is much shorter than the characteristic time of gelation, we have prevented gelation by rapidly heating the solution up to the unfolding temperature (~80 °C) for a short time (~30 min.) followed by fast cooling to the room temperature. Dynamic lightmore »scattering measurements show that if the gelation is prevented, nanosized irreversible aggregates (about 10–15 nm radius) form over a time scale of 10 days. These small aggregates persist and aggregate further into larger aggregates over several weeks. If gelation is not prevented, the nanosized aggregates become the building blocks for the gel network and define its mesh length scale. These results support our previously published conclusion on the nature of mesoscopic aggregates commonly observed in solutions of lysozyme, namely that aggregates do not form from lysozyme monomers in their native folded state. Only with the emergence of a small fraction of unfolded proteins molecules will the aggregates start to appear and grow.« less
  7. Sickle cell disease (SCD) is a genetic disease that has multiple aspects including public health and clinical aspects. The goals of the research study were to (1) understand the public health aspects of sickle cell disease, and (2) understand the overlap between public health aspects and clinical aspects that can inform research and practice beneficial to stakeholders in sickle cell disease management. The approach involved the construction of datasets from textual data sources produced by experts on sickle cell disease including from landmark publications published in 2020 on sickle cell disease in the United States. The interactive analytics of themore »integrated datasets that we produced identified that community-based approaches are common to both public health and clinical aspects of sickle cell disease. An interactive visualization that we produced can aid the understanding of the alignment of governmental organizations to recommendations for addressing sickle cell disease in the United States. From a global perspective, the interactive analytics of the integrated datasets can support the knowledge transfer stage of the SICKLE recommendations (Skills transfer, Increasing self-efficacy, Coordination, Knowledge transfer, Linking to adult services, and Evaluating readiness) for effective pediatric to adult transition care for patients with sickle cell disease. Considering the increased digital transformations resulting from the COVID-19 pandemic, the constructed datasets from expert recommendations can be integrated within remote digital platforms that expand access to care for individuals living with sickle cell disease. Finally, the interactive analytics of integrated expert recommendations on sickle cell disease management can support individual and team expertise for effective community-based research and practice.« less