Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available December 1, 2025
-
Free, publicly-accessible full text available September 1, 2025
-
Our relationship with technology is constantly evolving, and how we use technology in disasters has evolved even faster. Understanding how to utilize human interactions with technology and the limitations of those interactions will be a crucial building block to contextualizing crisis data. The impact of geographic scale on behavioral change analyses is an unexplored facet of our ability to identify relative severities of crisis situations, magnitudes of localized crises, and total durations of disaster impacts. Within this paper, we aggregate Twitter and hurricane damage data across a wide range of geographic scales and assess the impact of increasing scale on both the recognition of extreme behaviors and the correlation between activity and damage. The power-law relationships identified between many of these variables indicate a direct, definable scalar dependence of social media aggregation analyses, and these relationships can be used to inform more intelligent, equitable, and actionable social media usage in emergency response.more » « less
-
Bae, K.-H.; Feng, B.; Kim, S.; Lazarova-Molnar, S.; Zheng, Z.; Roeder, T.; Thiesing, R. (Ed.)When subject to disruptive events, the dynamics of human-infrastructure interactions can absorb, adapt, or, in a more abrupt manner, undergo substantial change. These changes are commonly studied when a disruptive event perturbs the physical infrastructure. Infrastructure breakdown is, thus, an indicator of the tipping point, and possible regime shift, in the human-infrastructure interactions. However, determining the likelihood of a regime shift during a global pandemic, where no infrastructure breakdown occurs, is unclear. In this study, we explore the dynamics of human-infrastructure interactions during the global COVID-19 pandemic for the entire United States and determine the likelihood of regime shifts in human interactions with six different categories of infrastructure. Our results highlight the impact of state-level characteristics, executive decisions, as well as the extent of impact by the pandemic as predictors of either undergoing or surviving regime shifts in human-infrastructure interactions.more » « less