skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Taylor, T."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available April 27, 2026
  2. Free, publicly-accessible full text available November 21, 2025
  3. Free, publicly-accessible full text available November 21, 2025
  4. Free, publicly-accessible full text available November 14, 2025
  5. Free, publicly-accessible full text available August 22, 2025
  6. Free, publicly-accessible full text available November 1, 2025
  7. Recent advancements in federated learning (FL) have greatly facilitated the development of decentralized collaborative applications, particularly in the domain of Artificial Intelligence of Things (AIoT). However, a critical aspect missing from the current research landscape is the ability to enable data-driven client models with symbolic reasoning capabilities. Specifically, the inherent heterogeneity of participating client devices poses a significant challenge, as each client exhibits unique logic reasoning properties. Failing to consider these device-specific specifications can result in critical properties being missed in the client predictions, leading to suboptimal performance. In this work, we propose a new training paradigm that leverages temporal logic reasoning to address this issue. Our approach involves enhancing the training process by incorporating mechanically generated logic expressions for each FL client. Additionally, we introduce the concept of aggregation clusters and develop a partitioning algorithm to effectively group clients based on the alignment of their temporal reasoning properties. We evaluate the proposed method on two tasks: a real-world traffic volume prediction task consisting of sensory data from fifteen states and a smart city multi-task prediction utilizing synthetic data. The evaluation results exhibit clear improvements, with performance accuracy improved by up to 54% across all sequential prediction models. 
    more » « less
  8. This report presents the results of a friendly competition for formal verification of continuous and hybrid systems with artificial intelligence (AI) components. Specifically, machine learning (ML) components in cyber-physical systems (CPS), such as feedforward neural networks used as feedback controllers in closed-loop systems, are considered, which is a class of systems classically known as intelligent control systems, or in more modern and specific terms, neural network control systems (NNCS). We broadly refer to this category as AI and NNCS (AINNCS). The friendly competition took place as part of the workshop Applied Verification for Continuous and Hybrid Systems (ARCH) in 2024. In the 8th edition of this AINNCS category at ARCH-COMP, five tools have been applied to solve 12 benchmarks, which are CORA, CROWN-Reach, GoTube, JuliaReach, and NNV. This is the year with the largest interest in the community, with two new, and three previous participants. Following last year’s trend, despite the additional challenges presented, the verification results have improved year-over-year. In terms of computation time, we can observe that the previous participants have improved as well, showing speed-ups of up to one order of magnitude, such as JuliaReach on the TORA benchmark with ReLU controller, and NNV on the TORA benchmark with both heterogeneous controllers. 
    more » « less
    Free, publicly-accessible full text available October 10, 2025