Deuterium fractionation provides a window into the thermal history of volatiles in the solar system and protoplanetary disks. While evidence of active molecular deuteration has been observed toward a handful of disks, it remains unclear whether this chemistry affects the composition of forming planetesimals due to limited observational constraints on the radial and vertical distribution of deuterated molecules. To shed light on this question, we introduce new Atacama Large Millimeter/submillimeter Array observations of DCO+and DCN
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract J = 2–1 at an angular resolution of 0.″5 (30 au) and combine them with archival data of higher energy transitions toward the protoplanetary disk around TW Hya. We carry out a radial excitation analysis assuming both LTE and non-LTE to localize the physical conditions traced by DCO+and DCN emission in the disk, thus assessing deuterium fractionation efficiencies and pathways at different disk locations. We find similar disk-averaged column densities of 1.9 × 1012and 9.8 × 1011cm−2for DCO+and DCN, with typical kinetic temperatures for both molecules of 20–30 K, indicating a common origin near the comet- and planet-forming midplane. The observed DCO+/DCN abundance ratio, combined with recent modeling results, provide tentative evidence of a gas-phase C/O enhancement within <40 au. Observations of DCO+and DCN in othermore » -
Abstract We present 870 μ m Atacama Large Millimeter/submillimeter Array polarization observations of thermal dust emission from the iconic, edge-on debris disk β Pic. While the spatially resolved map does not exhibit detectable polarized dust emission, we detect polarization at the ∼3 σ level when averaging the emission across the entire disk. The corresponding polarization fraction is P frac = 0.51% ± 0.19%. The polarization position angle χ is aligned with the minor axis of the disk, as expected from models of dust grains aligned via radiative alignment torques (RAT) with respect to a toroidal magnetic field ( B -RAT) or with respect to the anisotropy in the radiation field ( k -RAT). When averaging the polarized emission across the outer versus inner thirds of the disk, we find that the polarization arises primarily from the SW third. We perform synthetic observations assuming grain alignment via both k -RAT and B -RAT. Both models produce polarization fractions close to our observed value when the emission is averaged across the entire disk. When we average the models in the inner versus outer thirds of the disk, we find that k -RAT is the likely mechanism producing the polarized emission in βmore »Free, publicly-accessible full text available May 1, 2023
-
Abstract High spatial resolution CO observations of midinclination (≈30°–75°) protoplanetary disks offer an opportunity to study the vertical distribution of CO emission and temperature. The asymmetry of line emission relative to the disk major axis allows for a direct mapping of the emission height above the midplane, and for optically thick, spatially resolved emission in LTE, the intensity is a measure of the local gas temperature. Our analysis of Atacama Large Millimeter/submillimeter Array archival data yields CO emission surfaces, dynamically constrained stellar host masses, and disk atmosphere gas temperatures for the disks around the following: HD 142666, MY Lup, V4046 Sgr, HD 100546, GW Lup, WaOph 6, DoAr 25, Sz 91, CI Tau, and DM Tau. These sources span a wide range in stellar masses (0.50–2.10 M ⊙ ), ages (∼0.3–23 Myr), and CO gas radial emission extents (≈200–1000 au). This sample nearly triples the number of disks with mapped emission surfaces and confirms the wide diversity in line emitting heights ( z / r ≈ 0.1 to ≳0.5) hinted at in previous studies. We compute the radial and vertical CO gas temperature distributions for each disk. A few disks show local temperature dips or enhancements, some of which correspondmore »Free, publicly-accessible full text available June 1, 2023
-
Abstract We report the discovery of a circumplanetary disk (CPD) candidate embedded in the circumstellar disk of the T Tauri star AS 209 at a radial distance of about 200 au (on-sky separation of 1.″4 from the star at a position angle of 161°), isolated via 13 CO J = 2−1 emission. This is the first instance of CPD detection via gaseous emission capable of tracing the overall CPD mass. The CPD is spatially unresolved with a 117 × 82 mas beam and manifests as a point source in 13 CO, indicating that its diameter is ≲14 au. The CPD is embedded within an annular gap in the circumstellar disk previously identified using 12 CO and near-infrared scattered-light observations and is associated with localized velocity perturbations in 12 CO. The coincidence of these features suggests that they have a common origin: an embedded giant planet. We use the 13 CO intensity to constrain the CPD gas temperature and mass. We find that the CPD temperature is ≳35 K, higher than the circumstellar disk temperature at the radial location of the CPD, 22 K, suggesting that heating sources localized to the CPD must be present. The CPD gas mass is ≳0.095more »Free, publicly-accessible full text available July 27, 2023