- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Bonmarin, Mathias (1)
-
Harfmann, Anton (1)
-
Katepalli, Anudeep (1)
-
Krupczak, John (1)
-
Shi, Donglu (1)
-
Tene, Neshwanth Kumar (1)
-
Wang, Yuxin (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The research presented in this study aims to tackle a pivotal challenge in solar energy technologies: how to sustain energy production when direct sunlight is not readily available. By introducing a novel photothermal radiator that effectively harnesses diffused light through plasmonic Fe₃O₄@Cu2-xS nanoparticles, we seek to offer a sustainable solution for maintaining comfortable indoor temperatures without heavy reliance on traditional solar sources. Our approach involves the use of UV and IR lights to photothermally activate transparent Fe₃O₄@Cu2-xS thin films, showcasing a proactive strategy to optimize energy capture even in low-light scenarios such as cloudy days or nighttime hours. This innovative technology carries immense potential for energy-neutral buildings, paving the way to reduce dependence on external energy grids and promoting a more sustainable future for indoor heating and comfort control. The developed photothermal radiator incorporates multiple transparent thin films infused with plasmonic Fe₃O₄@Cu2-xS nanoparticles, known for their robust UV and IR absorptions driven by Localized Surface Plasmon Resonance (LSPR). Through the application of UV and IR lights, these thin films efficiently convert incident photons into thermal energy. Our experiments within a specially constructed Diffused Light Photothermal Box (DLPB), designed to simulate indoor environments, demonstrate the system's capability to raise temperatures above 50°C effectively. This pioneering photothermal radiator offers a promising pathway for sustainable heat generation in indoor spaces, harnessing ubiquitous diffused light sources to enhance energy efficiency.more » « less
An official website of the United States government
