skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Tenent, Robert"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Building-integrated photovoltaic (BIPV) systems blend energy generation with traditional architectural facade functions, promoting the development of zero-energy buildings by reducing energy consumption, lowering greenhouse gas emissions, and enhancing aesthetic value. Despite these benefits, the integration of photovoltaic technology into building materials introduces challenges, notably in ensuring structural integrity, maintaining thermal performance, and securing long-term durability under diverse environmental conditions. This review examines current standards and building codes relevant to BIPV windows, highlighting the necessity for testing protocols that encompass combined stressors from extreme weather events exacerbated by climate change. Through a case study focused on Singapore, the review underscores the rising frequency of combined heat and wind events, advocating for robust standards and adaptive policies. The paper identifies critical research gaps and proposes future directions to enhance the reliability and performance of BIPV systems, aiming to solidify their role in sustainable building practices. 
    more » « less
    Free, publicly-accessible full text available January 15, 2026
  2. Free, publicly-accessible full text available April 3, 2026
  3. Free, publicly-accessible full text available December 1, 2025
  4. A scanning electrochemical microscope (SECM) can directly monitor electrochemical processes at interfaces of electrodes and electrolytes and has been used as an analytical tool for lithium-ion battery (LIB) studies. Through SECM, we can visualize the electrochemical reactivities of active species in LIBs in-situ during cycling. This review begins with introducing SECM-based LIB research and then summarizes the working mechanism and operating modes of the technique as well as combinations of SECM with other techniques for LIB studies. We review the results with a focus on the interfacial properties, surface reactions and electrochemical activity of different electrode materials for LIBs. The investigations of battery degradation, kinetic parameters and electrolyte swelling by SECM are also discussed. Finally, the current limitations and perspectives are also described regarding future developments. 
    more » « less