Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
null (Ed.)Abstract Changing disturbance regimes and climate can overcome forest ecosystem resilience. Following high-severity fire, forest recovery may be compromised by lack of tree seed sources, warmer and drier postfire climate, or short-interval reburning. A potential outcome of the loss of resilience is the conversion of the prefire forest to a different forest type or nonforest vegetation. Conversion implies major, extensive, and enduring changes in dominant species, life forms, or functions, with impacts on ecosystem services. In the present article, we synthesize a growing body of evidence of fire-driven conversion and our understanding of its causes across western North America. We assess our capacity to predict conversion and highlight important uncertainties. Increasing forest vulnerability to changing fire activity and climate compels shifts in management approaches, and we propose key themes for applied research coproduced by scientists and managers to support decision-making in an era when the prefire forest may not return.more » « less
-
Abstract Ecosystems are changing in complex and unpredictable ways, and analysis of these changes is facilitated by coordinated, long‐term research. Meeting diverse societal needs requires an understanding of what populations and communities will be dominant in 20, 50, and 100 yr. This paper is a product of a synthesis effort of the U.S. National Science Foundation funded Long‐Term Ecological Research (LTER) network addressing the LTER core research area of populations and communities. This analysis revealed that each LTER site had at least one compelling story about what their site would look like in 50 or 100 yr. As the stories were prepared, themes emerged, and the stories were grouped into papers along five themes for this special issue: state change, connectivity, resilience, time lags, and cascading effects. This paper addresses the resilience theme and includes stories from the Baltimore (urban), Hubbard Brook (northern hardwood forest), Andrews (temperate rain forest), Moorea (coral reef), Cedar Creek (grassland), and North Temperate Lakes (lakes) sites. The concept of resilience (the capacity of a system to maintain structure and processes in the face of disturbance) is an old topic that has seen a resurgence of interest as the nature and extent of global environmental change have intensified. The stories we present here show the power of long‐term manipulation experiments (Cedar Creek), the value of long‐term monitoring of forests in both natural (Andrews, Hubbard Brook) and urban settings (Baltimore), and insights that can be gained from modeling and/or experimental approaches paired with long‐term observations (North Temperate Lakes, Moorea). Three main conclusions emerge from the analysis: (1) Resilience research has matured over the past 40 yr of the LTER program; (2) there are many examples of high resilience among the ecosystems in the LTER network; (3) there are also many warning signs of declining resilience of the ecosystems we study. These stories highlight the need for long‐term studies to address this complex topic and show how the diversity of sites within the LTER network facilitates the emergence of overarching concepts about this important driver of ecosystem structure, function, services, and futures.more » « less
-
Abstract Fire is a powerful ecological and evolutionary force that regulates organismal traits, population sizes, species interactions, community composition, carbon and nutrient cycling and ecosystem function. It also presents a rapidly growing societal challenge, due to both increasingly destructive wildfires and fire exclusion in fire‐dependent ecosystems. As an ecological process, fire integrates complex feedbacks among biological, social and geophysical processes, requiring coordination across several fields and scales of study.Here, we describe the diversity of ways in which fire operates as a fundamental ecological and evolutionary process on Earth. We explore research priorities in six categories of fire ecology: (a) characteristics of fire regimes, (b) changing fire regimes, (c) fire effects on above‐ground ecology, (d) fire effects on below‐ground ecology, (e) fire behaviour and (f) fire ecology modelling.We identify three emergent themes: the need to study fire across temporal scales, to assess the mechanisms underlying a variety of ecological feedbacks involving fire and to improve representation of fire in a range of modelling contexts.Synthesis: As fire regimes and our relationships with fire continue to change, prioritizing these research areas will facilitate understanding of the ecological causes and consequences of future fires and rethinking fire management alternatives.more » « less
An official website of the United States government
