Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The Cryogenic Underground Observatory for Rare Events (CUORE) is the most sensitive experiment searching for neutrinoless double-beta decay (0 νββ ) in 130 Te. CUORE uses a cryogenic array of 988 TeO 2 calorimeters operated at ∼10 mK with a total mass of 741 kg. To further increase the sensitivity, the detector response must be well understood. Here, we present a non-linear thermal model for the CUORE experiment on a detector-by-detector basis. We have examined both equilibrium and dynamic electro-thermal models of detectors by numerically fitting non-linear differential equations to the detector data of a subset of CUORE channels which are well characterized and representative of all channels. We demonstrate that the hot-electron effect and electric-field dependence of resistance in NTD-Ge thermistors alone are inadequate to describe our detectors' energy-dependent pulse shapes. We introduce an empirical second-order correction factor in the exponential temperature dependence of the thermistor, which produces excellent agreement with energy-dependent pulse shape data up to 6 MeV. We also present a noise analysis using the fitted thermal parameters and show that the intrinsic thermal noise is negligible compared to the observed noise for our detectors.more » « less
-
Abstract The Cryogenic Underground Observatory for Rare Events (CUORE) is the first cryogenic experiment searching for
decay that has been able to reach the one-tonne mass scale. The detector, located at the Laboratori Nazionali del Gran Sasso (LNGS) in Italy, consists of an array of 988$$0\nu \beta \beta $$ crystals arranged in a compact cylindrical structure of 19 towers. CUORE began its first physics data run in 2017 at a base temperature of about 10 mK and in April 2021 released its$${\mathrm{TeO}}_{2}$$ result of the search for$$3{\mathrm{rd}}$$ , corresponding to a tonne-year of$$0\nu \beta \beta $$ exposure. This is the largest amount of data ever acquired with a solid state detector and the most sensitive measurement of$$\mathrm{TeO}_{2}$$ decay in$$0\nu \beta \beta $$ ever conducted . We present the current status of CUORE search for$${}^{130}\mathrm{Te}$$ with the updated statistics of one tonne-yr. We finally give an update of the CUORE background model and the measurement of the$$0\nu \beta \beta $$ $${}^{130}\mathrm{Te}$$ decay half-life and decay to excited states of$$2\nu \beta \beta $$ , studies performed using an exposure of 300.7 kg yr.$${}^{130}\mathrm{Xe}$$ -
Abstract The possibility that neutrinos may be their own antiparticles, unique among the known fundamental particles, arises from the symmetric theory of fermions proposed by Ettore Majorana in 1937 1 . Given the profound consequences of such Majorana neutrinos, among which is a potential explanation for the matter–antimatter asymmetry of the universe via leptogenesis 2 , the Majorana nature of neutrinos commands intense experimental scrutiny globally; one of the primary experimental probes is neutrinoless double beta (0 νββ ) decay. Here we show results from the search for 0 νββ decay of 130 Te, using the latest advanced cryogenic calorimeters with the CUORE experiment 3 . CUORE, operating just 10 millikelvin above absolute zero, has pushed the state of the art on three frontiers: the sheer mass held at such ultralow temperatures, operational longevity, and the low levels of ionizing radiation emanating from the cryogenic infrastructure. We find no evidence for 0 νββ decay and set a lower bound of the process half-life as 2.2 × 10 25 years at a 90 per cent credibility interval. We discuss potential applications of the advances made with CUORE to other fields such as direct dark matter, neutrino and nuclear physics searches and large-scale quantum computing, which can benefit from sustained operation of large payloads in a low-radioactivity, ultralow-temperature cryogenic environment.more » « less
-
null (Ed.)Abstract The CUORE experiment is a large bolometric array searching for the lepton number violating neutrino-less double beta decay ( $$0\nu \beta \beta $$ 0 ν β β ) in the isotope $$\mathrm {^{130}Te}$$ 130 Te . In this work we present the latest results on two searches for the double beta decay (DBD) of $$\mathrm {^{130}Te}$$ 130 Te to the first $$0^{+}_2$$ 0 2 + excited state of $$\mathrm {^{130}Xe}$$ 130 Xe : the $$0\nu \beta \beta $$ 0 ν β β decay and the Standard Model-allowed two-neutrinos double beta decay ( $$2\nu \beta \beta $$ 2 ν β β ). Both searches are based on a 372.5 kg $$\times $$ × yr TeO $$_2$$ 2 exposure. The de-excitation gamma rays emitted by the excited Xe nucleus in the final state yield a unique signature, which can be searched for with low background by studying coincident events in two or more bolometers. The closely packed arrangement of the CUORE crystals constitutes a significant advantage in this regard. The median limit setting sensitivities at 90% Credible Interval (C.I.) of the given searches were estimated as $$\mathrm {S^{0\nu }_{1/2} = 5.6 \times 10^{24} \, \mathrm {yr}}$$ S 1 / 2 0 ν = 5.6 × 10 24 yr for the $${0\nu \beta \beta }$$ 0 ν β β decay and $$\mathrm {S^{2\nu }_{1/2} = 2.1 \times 10^{24} \, \mathrm {yr}}$$ S 1 / 2 2 ν = 2.1 × 10 24 yr for the $${2\nu \beta \beta }$$ 2 ν β β decay. No significant evidence for either of the decay modes was observed and a Bayesian lower bound at $$90\%$$ 90 % C.I. on the decay half lives is obtained as: $$\mathrm {(T_{1/2})^{0\nu }_{0^+_2} > 5.9 \times 10^{24} \, \mathrm {yr}}$$ ( T 1 / 2 ) 0 2 + 0 ν > 5.9 × 10 24 yr for the $$0\nu \beta \beta $$ 0 ν β β mode and $$\mathrm {(T_{1/2})^{2\nu }_{0^+_2} > 1.3 \times 10^{24} \, \mathrm {yr}}$$ ( T 1 / 2 ) 0 2 + 2 ν > 1.3 × 10 24 yr for the $$2\nu \beta \beta $$ 2 ν β β mode. These represent the most stringent limits on the DBD of $$^{130}$$ 130 Te to excited states and improve by a factor $$\sim 5$$ ∼ 5 the previous results on this process.more » « less
-
Abstract The Pandora Software Development Kit and algorithm libraries provide pattern-recognition logic essential to the reconstruction of particle interactions in liquid argon time projection chamber detectors. Pandora is the primary event reconstruction software used at ProtoDUNE-SP, a prototype for the Deep Underground Neutrino Experiment far detector. ProtoDUNE-SP, located at CERN, is exposed to a charged-particle test beam. This paper gives an overview of the Pandora reconstruction algorithms and how they have been tailored for use at ProtoDUNE-SP. In complex events with numerous cosmic-ray and beam background particles, the simulated reconstruction and identification efficiency for triggered test-beam particles is above 80% for the majority of particle type and beam momentum combinations. Specifically, simulated 1 GeV/ c charged pions and protons are correctly reconstructed and identified with efficiencies of 86.1 $$\pm 0.6$$ ± 0.6 % and 84.1 $$\pm 0.6$$ ± 0.6 %, respectively. The efficiencies measured for test-beam data are shown to be within 5% of those predicted by the simulation.more » « lessFree, publicly-accessible full text available July 1, 2024