We present radio observations of 23 optically discovered tidal disruption events (TDEs) on timescales of ∼500–3200 days postdiscovery. We detect nine new TDEs that did not have detectable radio emission at earlier times, indicating a late-time brightening after several hundred (and up to 2300) days; an additional seven TDEs exhibit radio emission whose origin is ambiguous or may be attributed to the host galaxy or an active galactic nucleus. We also report a new rising component in one TDE previously detected in the radio at ∼103days. While the radio emission in some of the detected TDEs peaked on a timescale ≈2–4 yr, over half of the sample still show rising emission. The range of luminosities for the sample is ∼1037–1039erg s−1, about 2 orders of magnitude below the radio luminosity of the relativistic TDE Sw J1644+57. Our data set indicates ∼40% of all optical TDEs are detected in radio hundreds to thousands of days after discovery, and that this is probably more common than early radio emission peaking at ∼102days. Using an equipartition analysis, we find evidence for a delayed launch of the radio-emitting outflows, with delay timescales of ∼500–2000 days, inferred velocities of ≈0.02–0.15
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract c , and kinetic energies of ∼1047–1049erg. We rule out off-axis relativistic jets as a viable explanation for this population, and conclude delayed outflows are a more likely explanation, possibly from delayed disk formation. We conclude late radio emission marks a fairly ubiquitous but heretofore overlooked phase of TDE evolution.Free, publicly-accessible full text available August 1, 2025 -
Abstract Type Ibn supernovae (SNe Ibn) are rare stellar explosions powered primarily by interaction between the SN ejecta and H-poor, He-rich material lost by their progenitor stars. Multiwavelength observations, particularly in the X-rays, of SNe Ibn constrain their poorly understood progenitor channels and mass-loss mechanisms. Here we present Swift X-ray, ultraviolet, and ground-based optical observations of the Type Ibn SN 2022ablq, only the second SN Ibn with X-ray detections to date. While similar to the prototypical Type Ibn SN 2006jc in the optical, SN 2022ablq is roughly an order of magnitude more luminous in the X-rays, reaching unabsorbed luminosities
L X∼ 4 × 1040erg s−1between 0.2–10 keV. From these X-ray observations we infer time-varying mass-loss rates between 0.05 and 0.5M ⊙yr−1peaking 0.5–2 yr before explosion. This complex mass-loss history and circumstellar environment disfavor steady-state winds as the primary progenitor mass-loss mechanism. We also search for precursor emission from alternative mass-loss mechanisms, such as eruptive outbursts, in forced photometry during the 2 yr before explosion. We find no statistically significant detections brighter thanM ≈ −14—too shallow to rule out precursor events similar to those observed for other SNe Ibn. Finally, numerical models of the explosion of an ∼15M ⊙helium star that undergoes an eruptive outburst ≈1.8 yr before explosion are consistent with the observed bolometric light curve. We conclude that our observations disfavor a Wolf–Rayet star progenitor losing He-rich material via stellar winds and instead favor lower-mass progenitor models, including Roche-lobe overflow in helium stars with compact binary companions or stars that undergo eruptive outbursts during late-stage nucleosynthesis stages. -
Context. There is a growing number of peculiar events that cannot be assigned to any of the main classes. SN 1987A and a handful of similar objects, thought to be explosive outcomes of blue supergiant stars, is one of them: while their spectra closely resemble those of H-rich (IIP) SNe, their light curve (LC) evolution is very different.Aims. Here we present the detailed photometric and spectroscopic analysis of SN 2021aatd, a peculiar Type II explosion. While its early-time evolution resembles that of the slowly evolving double-peaked SN 2020faa (although at a lower luminosity scale), after ∼40 days its LC shape becomes similar to that of SN 1987A-like explosions.Methods. In addition to comparing LCs, color curves, and spectra of SN 2021aatd to those of SNe 2020faa, 1987A, and other objects, we compared the observed spectra with our ownSYN++ models and with the outputs of published radiative transfer models. We also carried out a detailed modeling of the pseudo-bolometric LCs of SNe 2021aatd and 1987A with a self-developed semi-analytical code, assuming a two-component ejecta (core + shell), and involving the rotational energy of a newborn magnetar in addition to radioactive decay.Results. We find that the photometric and the spectroscopic evolution of SN 2021aatd can be well described with the explosion of a ∼15M ⊙blue supergiant star. Nevertheless, SN 2021aatd shows higher temperatures and weaker NaI D and BaII 6142 Å lines than SN 1987A, which is instead reminiscent of IIP-like atmospheres. With the applied two-component ejecta model (accounting for decay and magnetar energy), we can successfully describe the bolometric LC of SN 2021aatd, including the first ∼40-day phase showing an excess compared to 87A-like SNe, but being strikingly similar to that of the long-lived SN 2020faa. Nevertheless, finding a unified model that also explains the LCs of more luminous events (e.g., SN 2020faa) is still a matter of debate.Free, publicly-accessible full text available October 1, 2025 -
Abstract We present the results from a multiyear radio campaign of the superluminous supernova (SLSN) SN 2017ens, which yielded the earliest radio detection of an SLSN to date at the age of ∼3.3 yr after explosion. SN 2017ens was not detected at radio frequencies in the first ∼300 days but reached
L ν ≈ 1028erg s−1cm−2Hz−1atν ∼ 6 GHz, ∼1250 days post explosion. Interpreting the radio observations in the context of synchrotron radiation from the supernova shock interaction with the circumstellar medium (CSM), we infer an effective mass-loss rate atr ∼ 1017cm from the explosion’s site, for a wind speed ofv w = 50–60 km s−1as measured from optical spectra. These findings are consistent with the spectroscopic metamorphosis of SN 2017ens from hydrogen poor to hydrogen rich ∼190 days after explosion reported by Chen et al. SN 2017ens is thus an addition to the sample of hydrogen-poor massive progenitors that explode shortly after having lost their hydrogen envelope. The inferred circumstellar densities, implying a CSM mass up to ∼0.5M ☉, and low velocity of the ejection suggest that binary interactions (in the form of common-envelope evolution and subsequent envelope ejection) play a role in shaping the evolution of the stellar progenitors of SLSNe in the ≲500 yr preceding core collapse. -
Abstract We present ultraviolet/optical/near-infrared observations and modeling of Type II supernovae (SNe II) whose early time (
δ t < 2 days) spectra show transient, narrow emission lines from shock ionization of confined (r < 1015cm) circumstellar material (CSM). The observed electron-scattering broadened line profiles (i.e., IIn-like) of Hi , Hei/ii , Civ , and Niii/iv/v from the CSM persist on a characteristic timescale (t IIn) that marks a transition to a lower-density CSM and the emergence of Doppler-broadened features from the fast-moving SN ejecta. Our sample, the largest to date, consists of 39 SNe with early time IIn-like features in addition to 35 “comparison” SNe with no evidence of early time IIn-like features, all with ultraviolet observations. The total sample includes 50 unpublished objects with a total of 474 previously unpublished spectra and 50 multiband light curves, collected primarily through the Young Supernova Experiment and Global Supernova Project collaborations. For all sample objects, we find a significant correlation between peak ultraviolet brightness and botht IInand the rise time, as well as evidence for enhanced peak luminosities in SNe II with IIn-like features. We quantify mass-loss rates and CSM density for the sample through the matching of peak multiband absolute magnitudes, rise times,t IIn, and optical SN spectra with a grid of radiation hydrodynamics and non-local thermodynamic equilibrium radiative-transfer simulations. For our grid of models, all with the same underlying explosion, there is a trend between the duration of the electron-scattering broadened line profiles and inferred mass-loss rate: (0.01M ⊙yr−1)] days.Free, publicly-accessible full text available July 31, 2025 -
Abstract We present photometric and spectroscopic data for the nearby Type I supernova (SN Ia) 2019eix (originally classified as an SN Ic), from the day of its discovery up to 100 days after maximum brightness. Before maximum light, SN 2019eix resembles a typical SN Ic, albeit lacking the usual O
i feature. Its light curve is similar to the typical SN Ic with decline rates (ΔM 15,V = 0.84) and absolute magnitudeM V = −18.35. However, after maximum light, this SN has unusual spectroscopic features, a large degree of line blending, significant line blanketing in the blue (λ < 5000 Å), and strong Caii absorption features during and after peak brightness. These unusual spectral features are similar to models of subluminous thermonuclear explosions, specifically double-detonation models of SNe Ia. Photometrically, SN 2019eix appears to be somewhat brighter with slower decline rates than other double-detonation candidates. We modeled the spectra using the radiative-transfer codeTARDIS using SN 1994I (an SN Ic) as a base model to see whether we could reproduce the unusual features of SN 2019eix and found them to be consistent with the exception of the Oi feature. We also compared SN 2019eix with double-detonation models and found them to best match the observations of SN 2019eix, but failed to reproduce its full photometric and spectroscopic evolution. -
ABSTRACT Near-infrared (NIR) observations of normal Type Ia supernovae (SNe Ia) obtained between 150 and 500 d past maximum light reveal the existence of an extended plateau. Here, we present observations of the underluminous, 1991bg-like SN 2021qvv. Early, ground-based optical and NIR observations show that SN 2021qvv is similar to SN 2006mr, making it one of the dimmest, fastest evolving 1991bg-like SNe to date. Late-time (170–250 d) Hubble Space Telescope observations of SN 2021qvv reveal no sign of a plateau. An extrapolation of these observations backwards to earlier-phase NIR observations of SN 2006mr suggests the complete absence of an NIR plateau, at least out to 250 d. This absence may be due to a higher ionization state of the ejecta, as predicted by certain sub-Chandrasekhar-mass detonation models, or to the lower temperatures of the ejecta of 1991bg-like SNe, relative to normal SNe Ia, which might preclude their becoming fluorescent and shifting ultraviolet light into the NIR. This suggestion can be tested by acquiring NIR imaging of a sample of 1991bg-like SNe that covers the entire range from slowly evolving to fast-evolving events (0.2 ≲ sBV ≲ 0.6). A detection of the NIR plateau in slower evolving, hotter 1991bg-like SNe would provide further evidence that these SNe exist along a continuum with normal SNe Ia. Theoretical progenitor and explosion scenarios would then have to match the observed properties of both SN Ia subtypes.
-
Abstract We present photometric and spectroscopic data for SN 2022joj, a nearby peculiar Type Ia supernova (SN Ia) with a fast decline rate (Δ
m 15,B= 1.4 mag). SN 2022joj shows exceedingly red colors, with a value of approximatelyB −V ≈ 1.1 mag during its initial stages, beginning from 11 days before maximum brightness. As it evolves, the flux shifts toward the blue end of the spectrum, approachingB −V ≈ 0 mag around maximum light. Furthermore, at maximum light and beyond, the photometry is consistent with that of typical SNe Ia. This unusual behavior extends to its spectral characteristics, which initially displayed a red spectrum and later evolved to exhibit greater consistency with typical SNe Ia. Spectroscopically, we find strong agreement between SN 2022joj and double detonation models with white dwarf masses of around 1M ⊙and a thin He shell between 0.01 and 0.05M ⊙. Moreover, the early red colors are explained by line-blanketing absorption from iron peak elements created by the double detonation scenario in similar mass ranges. The nebular spectra in SN 2022joj deviate from expectations for double detonation, as we observe strong [Feiii ] emission instead of [Caii ] lines as anticipated, though this is not as robust a prediction as early red colors and spectra. The fact that as He shells get thinner these SNe start to look more like normal SNe Ia raises the possibility that this is the triggering mechanism for the majority of SNe Ia, though evidence would be missed if the SNe are not observed early enough. -
ABSTRACT We present an in-depth study of the late-time near-infrared plateau in Type Ia supernovae (SNe Ia), which occurs between 70 and 500 d. We double the existing sample of SNe Ia observed during the late-time near-infrared plateau with new observations taken with the Hubble Space Telescope, Gemini, New Technology Telescope, the 3.5-m Calar Alto Telescope, and the Nordic Optical Telescope. Our sample consists of 24 nearby SNe Ia at redshift < 0.025. We are able to confirm that no plateau exists in the Ks band for most normal SNe Ia. SNe Ia with broader optical light curves at peak tend to have a higher average brightness on the plateau in J and H, most likely due to a shallower decline in the preceding 100 d. SNe Ia that are more luminous at peak also show a steeper decline during the plateau phase in H. We compare our data to state-of-the-art radiative transfer models of nebular SNe Ia in the near-infrared. We find good agreement with the sub-Mch model that has reduced non-thermal ionization rates, but no physical justification for reducing these rates has yet been proposed. An analysis of the spectral evolution during the plateau demonstrates that the ratio of [Fe ii] to [Fe iii] contribution in a near-infrared filter determines the light curve evolution in said filter. We find that overluminous SNe decline slower during the plateau than expected from the trend seen for normal SNe Ia.
-
Abstract We present a sample of Type Icn supernovae (SNe Icn), a newly discovered class of transients characterized by their interaction with H- and He-poor circumstellar material (CSM). This sample is the largest collection of SNe Icn to date and includes observations of two published objects (SN 2019hgp and SN 2021csp) and two objects not yet published in the literature (SN 2019jc and SN 2021ckj). The SNe Icn display a range of peak luminosities, rise times, and decline rates, as well as diverse late-time spectral features. To investigate their explosion and progenitor properties, we fit their bolometric light curves to a semianalytical model consisting of luminosity inputs from circumstellar interaction and radioactive decay of56Ni. We infer low ejecta masses (≲2
M ⊙) and56Ni masses (≲0.04M ⊙) from the light curves, suggesting that normal stripped-envelope supernova (SESN) explosions within a dense CSM cannot be the underlying mechanism powering SNe Icn. Additionally, we find that an estimate of the star formation rate density at the location of SN 2019jc lies at the lower end of a distribution of SESNe, in conflict with a massive star progenitor of this object. Based on its estimated ejecta mass,56Ni mass, and explosion site properties, we suggest a low-mass, ultra-stripped star as the progenitor of SN 2019jc. For other SNe Icn, we suggest that a Wolf–Rayet star progenitor may better explain their observed properties. This study demonstrates that multiple progenitor channels may produce SNe Icn and other interaction-powered transients.