skip to main content


Search for: All records

Creators/Authors contains: "Thakur, S."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Radio frequency (RF) driven helicon plasma sources are commonly used for their ability to produce high-density argon plasmas ( n > 10 19  m −3 ) at relatively moderate powers (typical RF power < 2 kW). Typical electron temperatures are <10 eV and typical ion temperatures are <0.6 eV. A newly designed helicon antenna assembly (with concentric, double-layered, fully liquid-cooled RF-transparent windows) operates in steady-state at RF powers up to 10 kW. We report on the dependence of argon plasma density, electron temperature and ion temperature on RF power. At 10 kW, ion temperatures >2 eV in argon plasmas are measured with laser induced fluorescence, which is consistent with a simple volume averaged 0D power balance model. 1D Monte Carlo simulations of the neutral density profile for these plasma conditions show strong neutral depletion near the core and predict neutral temperatures well above room temperatures. The plasmas created in this high-power helicon source (when light ions are employed) are ideally suited for fusion divertor plasma-material interaction studies and negative ion production for neutral beams. 
    more » « less
  2. Free, publicly-accessible full text available October 1, 2025
  3. Abstract

    A study of the anomalous couplings of the Higgs boson to vector bosons, including$${\textit{CP}}$$CP-violation effects, has been conducted using its production and decay in the WW channel. This analysis is performed on proton–proton collision data collected with the CMS detector at the CERN LHC during 2016–2018 at a center-of-mass energy of 13 TeV, and corresponds to an integrated luminosity of 138$$\,\text {fb}^{-1}$$fb-1. The different-flavor dilepton$$({\textrm{e}} {{\upmu }})$$(eμ)final state is analyzed, with dedicated categories targeting gluon fusion, electroweak vector boson fusion, and associated production with a W or Z boson. Kinematic information from associated jets is combined using matrix element techniques to increase the sensitivity to anomalous effects at the production vertex. A simultaneous measurement of four Higgs boson couplings to electroweak vector bosons is performed in the framework of a standard model effective field theory. All measurements are consistent with the expectations for the standard model Higgs boson and constraints are set on the fractional contribution of the anomalous couplings to the Higgs boson production cross section.

     
    more » « less
    Free, publicly-accessible full text available August 1, 2025
  4. Abstract

    A measurement is presented of a ratio observable that provides a measure of the azimuthal correlations among jets with large transverse momentum$$p_{\textrm{T}}$$pT. This observable is measured in multijet events over the range of$$p_{\textrm{T}} = 360$$pT=360$$3170\,\text {Ge}\hspace{-.08em}\text {V} $$3170GeVbased on data collected by the CMS experiment in proton-proton collisions at a centre-of-mass energy of 13$$\,\text {Te}\hspace{-.08em}\text {V}$$TeV, corresponding to an integrated luminosity of 134$$\,\text {fb}^{-1}$$fb-1. The results are compared with predictions from Monte Carlo parton-shower event generator simulations, as well as with fixed-order perturbative quantum chromodynamics (pQCD) predictions at next-to-leading-order (NLO) accuracy obtained with different parton distribution functions (PDFs) and corrected for nonperturbative and electroweak effects. Data and theory agree within uncertainties. From the comparison of the measured observable with the pQCD prediction obtained with the NNPDF3.1 NLO PDFs, the strong coupling at the Z boson mass scale is$$\alpha _\textrm{S} (m_{{\textrm{Z}}}) =0.1177 \pm 0.0013\, \text {(exp)} _{-0.0073}^{+0.0116} \,\text {(theo)} = 0.1177_{-0.0074}^{+0.0117}$$αS(mZ)=0.1177±0.0013(exp)-0.0073+0.0116(theo)=0.1177-0.0074+0.0117, where the total uncertainty is dominated by the scale dependence of the fixed-order predictions. A test of the running of$$\alpha _\textrm{S}$$αSin the$$\,\text {Te}\hspace{-.08em}\text {V}$$TeVregion shows no deviation from the expected NLO pQCD behaviour.

     
    more » « less
    Free, publicly-accessible full text available August 1, 2025
  5. Energy correlators that describe energy-weighted distances between two or three particles in a hadronic jet are measured using an event sample ofs=13TeVproton-proton collisions collected by the CMS experiment and corresponding to an integrated luminosity of36.3fb1. The measured distributions are consistent with the trends in the simulation that reveal two key features of the strong interaction: confinement and asymptotic freedom. By comparing the ratio of the measured three- and two-particle energy correlator distributions with theoretical calculations that resum collinear emissions at approximate next-to-next-to-leading-logarithmic accuracy matched to a next-to-leading-order calculation, the strong coupling is determined at theZboson mass:αS(mZ)=0.12290.0050+0.0040, the most preciseαS(mZ)value obtained using jet substructure observables.

    <supplementary-material><permissions><copyright-statement>© 2024 CERN, for the CMS Collaboration</copyright-statement><copyright-year>2024</copyright-year><copyright-holder>CERN</copyright-holder></permissions></supplementary-material></sec> </div> <a href='#' class='show open-abstract' style='margin-left:10px;'>more »</a> <a href='#' class='hide close-abstract' style='margin-left:10px;'>« less</a> <div class="actions" style="padding-left:10px;"> <span class="reader-count"> Free, publicly-accessible full text available August 1, 2025</span> </div> </div><div class="clearfix"></div> </div> </li> <li> <div class="article item document" itemscope itemtype="http://schema.org/TechArticle"> <div class="item-info"> <div class="title"> <a href="https://par.nsf.gov/biblio/10514236-observation-abnormal-suppression-f0-production-ppb-collisions-snn-tev" itemprop="url"> <span class='span-link' itemprop="name">Observation of abnormal suppression of f0(980) production in p–Pb collisions at sNN = 5.02 TeV</span> </a> </div> <div> <strong> <a class="misc external-link" href="https://doi.org/10.1016/j.physletb.2024.138665" target="_blank" title="Link to document DOI">https://doi.org/10.1016/j.physletb.2024.138665  <span class="fas fa-external-link-alt"></span></a> </strong> </div> <div class="metadata"> <span class="authors"> <span class="author" itemprop="author">Acharya, S</span> <span class="sep">; </span><span class="author" itemprop="author">Adamová, D</span> <span class="sep">; </span><span class="author" itemprop="author">Aglieri_Rinella, G</span> <span class="sep">; </span><span class="author" itemprop="author">Agnello, M</span> <span class="sep">; </span><span class="author" itemprop="author">Agrawal, N</span> <span class="sep">; </span><span class="author" itemprop="author">Ahammed, Z</span> <span class="sep">; </span><span class="author" itemprop="author">Ahmad, S</span> <span class="sep">; </span><span class="author" itemprop="author">Ahn, SU</span> <span class="sep">; </span><span class="author" itemprop="author">Ahuja, I</span> <span class="sep">; </span><span class="author" itemprop="author">Akindinov, A</span> <span class="sep">; </span><span class="author">et al</span></span> <span class="year">( <time itemprop="datePublished" datetime="2024-06-01">June 2024</time> , Physics Letters B) </span> </div> <div class="actions" style="padding-left:10px;"> <span class="reader-count"> Free, publicly-accessible full text available June 1, 2025</span> </div> </div><div class="clearfix"></div> </div> </li> <li> <div class="article item document" itemscope itemtype="http://schema.org/TechArticle"> <div class="item-info"> <div class="title"> <a href="https://par.nsf.gov/biblio/10537377-observation-decay-studies-baryon-proton-proton-collisions" itemprop="url"> <span class='span-link' itemprop="name">Observation of the Ξb−→ψ(2S)Ξ− decay and studies of the Ξb(5945)0 baryon in proton-proton collisions at s=13  TeV</span> </a> </div> <div> <strong> <a class="misc external-link" href="https://doi.org/10.1103/PhysRevD.110.012002" target="_blank" title="Link to document DOI">https://doi.org/10.1103/PhysRevD.110.012002  <span class="fas fa-external-link-alt"></span></a> </strong> </div> <div class="metadata"> <span class="authors"> <span class="author" itemprop="author">Hayrapetyan, A</span> <span class="sep">; </span><span class="author" itemprop="author">Tumasyan, A</span> <span class="sep">; </span><span class="author" itemprop="author">Adam, W</span> <span class="sep">; </span><span class="author" itemprop="author">Andrejkovic, J W</span> <span class="sep">; </span><span class="author" itemprop="author">Bergauer, T</span> <span class="sep">; </span><span class="author" itemprop="author">Chatterjee, S</span> <span class="sep">; </span><span class="author" itemprop="author">Damanakis, K</span> <span class="sep">; </span><span class="author" itemprop="author">Dragicevic, M</span> <span class="sep">; </span><span class="author" itemprop="author">Hussain, P S</span> <span class="sep">; </span><span class="author" itemprop="author">Jeitler, M</span> <span class="sep">; </span><span class="author">et al</span></span> <span class="year">( <time itemprop="datePublished" datetime="2024-07-01">July 2024</time> , Physical review) </span> </div> <div style="cursor: pointer;-webkit-line-clamp: 5;" class="abstract" itemprop="description"> <p>The first observation of the decay<math display='inline'><msubsup><mi mathvariant='normal'>Ξ</mi><mi>b</mi><mo>−</mo></msubsup><mo stretchy='false'>→</mo><mrow><mi>ψ</mi><mrow><mo stretchy='false'>(</mo><mn>2</mn><mi>S</mi><mo stretchy='false'>)</mo></mrow></mrow><msup><mi mathvariant='normal'>Ξ</mi><mo>−</mo></msup></math>and measurement of the branching ratio of<math display='inline'><msubsup><mi mathvariant='normal'>Ξ</mi><mi>b</mi><mo>−</mo></msubsup><mo stretchy='false'>→</mo><mrow><mi>ψ</mi><mrow><mo stretchy='false'>(</mo><mn>2</mn><mi>S</mi><mo stretchy='false'>)</mo></mrow></mrow><msup><mi mathvariant='normal'>Ξ</mi><mo>−</mo></msup></math>to<math display='inline'><msubsup><mi mathvariant='normal'>Ξ</mi><mi>b</mi><mo>−</mo></msubsup><mo stretchy='false'>→</mo><mrow><mi>J</mi><mo>/</mo><mi>ψ</mi></mrow><msup><mi mathvariant='normal'>Ξ</mi><mo>−</mo></msup></math>are presented. The<math display='inline'><mi>J</mi><mo>/</mo><mi>ψ</mi></math>and<math display='inline'><mi>ψ</mi><mrow><mo stretchy='false'>(</mo><mn>2</mn><mi>S</mi><mo stretchy='false'>)</mo></mrow></math>mesons are reconstructed using their dimuon decay modes. The results are based on proton-proton colliding beam data from the LHC collected by the CMS experiment at<math display='inline'><msqrt><mi>s</mi></msqrt><mo>=</mo><mn>13</mn><mtext> </mtext><mtext> </mtext><mi>TeV</mi></math>in 2016–2018, corresponding to an integrated luminosity of<math display='inline'><mn>140</mn><mtext> </mtext><mtext> </mtext><msup><mi>fb</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup></math>. The branching fraction ratio is measured to be<math display='inline'><mrow><mi mathvariant='script'>B</mi><mo stretchy='false'>(</mo><mrow><msubsup><mrow><mi mathvariant='normal'>Ξ</mi></mrow><mrow><mi>b</mi></mrow><mrow><mo>−</mo></mrow></msubsup><mo stretchy='false'>→</mo><mrow><mi>ψ</mi><mrow><mo stretchy='false'>(</mo><mn>2</mn><mi>S</mi><mo stretchy='false'>)</mo></mrow></mrow><msup><mrow><mi mathvariant='normal'>Ξ</mi></mrow><mrow><mo>−</mo></mrow></msup></mrow><mo stretchy='false'>)</mo><mo>/</mo><mi mathvariant='script'>B</mi><mo stretchy='false'>(</mo><mrow><msubsup><mrow><mi mathvariant='normal'>Ξ</mi></mrow><mrow><mi>b</mi></mrow><mrow><mo>−</mo></mrow></msubsup><mo stretchy='false'>→</mo><mrow><mi>J</mi><mo>/</mo><mi>ψ</mi></mrow><msup><mrow><mi mathvariant='normal'>Ξ</mi></mrow><mrow><mo>−</mo></mrow></msup></mrow><mo stretchy='false'>)</mo><mo>=</mo><mspace linebreak='goodbreak'/><mn>0.8</mn><msubsup><mrow><mn>4</mn></mrow><mrow><mo>−</mo><mn>0.19</mn></mrow><mrow><mo>+</mo><mn>0.21</mn></mrow></msubsup><mrow><mo stretchy='false'>(</mo><mi>stat</mi><mo stretchy='false'>)</mo></mrow><mo>±</mo><mn>0.10</mn><mrow><mo stretchy='false'>(</mo><mi>syst</mi><mo stretchy='false'>)</mo></mrow><mo>±</mo><mn>0.02</mn><mo stretchy='false'>(</mo><mi mathvariant='script'>B</mi><mo stretchy='false'>)</mo></mrow></math>, where the last uncertainty comes from the uncertainties in the branching fractions of the charmonium states. New measurements of the<math display='inline'><msub><mi mathvariant='normal'>Ξ</mi><mi>b</mi></msub><mo stretchy='false'>(</mo><mn>5945</mn><msup><mo stretchy='false'>)</mo><mn>0</mn></msup></math>baryon mass and natural width are also presented, using the<math display='inline'><msubsup><mi mathvariant='normal'>Ξ</mi><mi>b</mi><mo>−</mo></msubsup><msup><mi>π</mi><mo>+</mo></msup></math>final state, where the<math display='inline'><msubsup><mi mathvariant='normal'>Ξ</mi><mi>b</mi><mo>−</mo></msubsup></math>baryon is reconstructed through the decays<math display='inline'><mrow><mi>J</mi><mo>/</mo><mi>ψ</mi></mrow><msup><mi mathvariant='normal'>Ξ</mi><mo>−</mo></msup></math>,<math display='inline'><mrow><mi>ψ</mi><mrow><mo stretchy='false'>(</mo><mn>2</mn><mi>S</mi><mo stretchy='false'>)</mo></mrow></mrow><msup><mi mathvariant='normal'>Ξ</mi><mo>−</mo></msup></math>,<math display='inline'><mrow><mi>J</mi><mo>/</mo><mi>ψ</mi></mrow><mi mathvariant='normal'>Λ</mi><msup><mi>K</mi><mo>−</mo></msup></math>, and<math display='inline'><mrow><mi>J</mi><mo>/</mo><mi>ψ</mi></mrow><msup><mi mathvariant='normal'>Σ</mi><mn>0</mn></msup><msup><mi>K</mi><mo>−</mo></msup></math>. Finally, the fraction of<math display='inline'><msubsup><mi mathvariant='normal'>Ξ</mi><mi>b</mi><mo>−</mo></msubsup></math>baryons produced from<math display='inline'><msub><mi mathvariant='normal'>Ξ</mi><mi>b</mi></msub><mo stretchy='false'>(</mo><mn>5945</mn><msup><mo stretchy='false'>)</mo><mn>0</mn></msup></math>decays is determined.</p> <sec><title/><supplementary-material><permissions><copyright-statement>© 2024 CERN, for the CMS Collaboration</copyright-statement><copyright-year>2024</copyright-year><copyright-holder>CERN</copyright-holder></permissions></supplementary-material></sec> </div> <a href='#' class='show open-abstract' style='margin-left:10px;'>more »</a> <a href='#' class='hide close-abstract' style='margin-left:10px;'>« less</a> <div class="actions" style="padding-left:10px;"> <span class="reader-count"> Free, publicly-accessible full text available July 1, 2025</span> </div> </div><div class="clearfix"></div> </div> </li> <li> <div class="article item document" itemscope itemtype="http://schema.org/TechArticle"> <div class="item-info"> <div class="title"> <a href="https://par.nsf.gov/biblio/10537391-search-scalar-pseudoscalar-dilepton-resonance-produced-association-massive-vector-boson-top-quark-antiquark-pair-multilepton-events" itemprop="url"> <span class='span-link' itemprop="name">Search for a scalar or pseudoscalar dilepton resonance produced in association with a massive vector boson or top quark-antiquark pair in multilepton events at s=13  TeV</span> </a> </div> <div> <strong> <a class="misc external-link" href="https://doi.org/10.1103/PhysRevD.110.012013" target="_blank" title="Link to document DOI">https://doi.org/10.1103/PhysRevD.110.012013  <span class="fas fa-external-link-alt"></span></a> </strong> </div> <div class="metadata"> <span class="authors"> <span class="author" itemprop="author">Tumasyan, A</span> <span class="sep">; </span><span class="author" itemprop="author">Adam, W</span> <span class="sep">; </span><span class="author" itemprop="author">Andrejkovic, J W</span> <span class="sep">; </span><span class="author" itemprop="author">Bergauer, T</span> <span class="sep">; </span><span class="author" itemprop="author">Chatterjee, S</span> <span class="sep">; </span><span class="author" itemprop="author">Damanakis, K</span> <span class="sep">; </span><span class="author" itemprop="author">Dragicevic, M</span> <span class="sep">; </span><span class="author" itemprop="author">Escalante_Del_Valle, A</span> <span class="sep">; </span><span class="author" itemprop="author">Hussain, P S</span> <span class="sep">; </span><span class="author" itemprop="author">Jeitler, M</span> <span class="sep">; </span><span class="author">et al</span></span> <span class="year">( <time itemprop="datePublished" datetime="2024-07-01">July 2024</time> , Physical Review D) </span> </div> <div style="cursor: pointer;-webkit-line-clamp: 5;" class="abstract" itemprop="description"> <p>A search for beyond the standard model spin-0 bosons,<math display='inline'><mi>ϕ</mi></math>, that decay into pairs of electrons, muons, or tau leptons is presented. The search targets the associated production of such bosons with a<math display='inline'><mi>W</mi></math>or<math display='inline'><mi>Z</mi></math>gauge boson, or a top quark-antiquark pair, and uses events with three or four charged leptons, including hadronically decaying tau leptons. The proton-proton collision data set used in the analysis was collected at the LHC from 2016 to 2018 at a center-of-mass energy of 13 TeV, and corresponds to an integrated luminosity of<math display='inline'><mn>138</mn><mtext> </mtext><mtext> </mtext><msup><mi>fb</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup></math>. The observations are consistent with the predictions from standard model processes. Upper limits are placed on the product of cross sections and branching fractions of such new particles over the mass range of 15 to 350 GeV with scalar, pseudoscalar, or Higgs-boson-like couplings, as well as on the product of coupling parameters and branching fractions. Several model-dependent exclusion limits are also presented. For a Higgs-boson-like<math display='inline'><mi>ϕ</mi></math>model, limits are set on the mixing angle of the Higgs boson with the<math display='inline'><mi>ϕ</mi></math>boson. For the associated production of a<math display='inline'><mi>ϕ</mi></math>boson with a top quark-antiquark pair, limits are set on the coupling to top quarks. Finally, limits are set for the first time on a fermiophilic dilaton-like model with scalar couplings and a fermiophilic axion-like model with pseudoscalar couplings.</p> <sec><title/><supplementary-material><permissions><copyright-statement>© 2024 CERN, for the CMS Collaboration</copyright-statement><copyright-year>2024</copyright-year><copyright-holder>CERN</copyright-holder></permissions></supplementary-material></sec> </div> <a href='#' class='show open-abstract' style='margin-left:10px;'>more »</a> <a href='#' class='hide close-abstract' style='margin-left:10px;'>« less</a> <div class="actions" style="padding-left:10px;"> <span class="reader-count"> Free, publicly-accessible full text available July 1, 2025</span> </div> </div><div class="clearfix"></div> </div> </li> <li> <div class="article item document" itemscope itemtype="http://schema.org/TechArticle"> <div class="item-info"> <div class="title"> <a href="https://par.nsf.gov/biblio/10537322-search-dark-qcd-emerging-jets-proton-proton-collisions-sqrt-tev" itemprop="url"> <span class='span-link' itemprop="name">Search for dark QCD with emerging jets in proton-proton collisions at $$ \sqrt{s} $$ = 13 TeV</span> </a> </div> <div> <strong> <a class="misc external-link" href="https://doi.org/10.1007/JHEP07(2024)142" target="_blank" title="Link to document DOI">https://doi.org/10.1007/JHEP07(2024)142  <span class="fas fa-external-link-alt"></span></a> </strong> </div> <div class="metadata"> <span class="authors"> <span class="author" itemprop="author">Hayrapetyan, A</span> <span class="sep">; </span><span class="author" itemprop="author">Tumasyan, A</span> <span class="sep">; </span><span class="author" itemprop="author">Adam, W</span> <span class="sep">; </span><span class="author" itemprop="author">Andrejkovic, J W</span> <span class="sep">; </span><span class="author" itemprop="author">Bergauer, T</span> <span class="sep">; </span><span class="author" itemprop="author">Chatterjee, S</span> <span class="sep">; </span><span class="author" itemprop="author">Damanakis, K</span> <span class="sep">; </span><span class="author" itemprop="author">Dragicevic, M</span> <span class="sep">; </span><span class="author" itemprop="author">Hussain, P S</span> <span class="sep">; </span><span class="author" itemprop="author">Jeitler, M</span> <span class="sep">; </span><span class="author">et al</span></span> <span class="year">( <time itemprop="datePublished" datetime="2024-07-01">July 2024</time> , Journal of High Energy Physics) </span> </div> <div style="cursor: pointer;-webkit-line-clamp: 5;" class="abstract" itemprop="description"> <title>A<sc>bstract</sc>

    A search for “emerging jets” produced in proton-proton collisions at a center-of-mass energy of 13 TeV is performed using data collected by the CMS experiment corresponding to an integrated luminosity of 138 fb1. This search examines a hypothetical dark quantum chromodynamics (QCD) sector that couples to the standard model (SM) through a scalar mediator. The scalar mediator decays into an SM quark and a dark sector quark. As the dark sector quark showers and hadronizes, it produces long-lived dark mesons that subsequently decay into SM particles, resulting in a jet, known as an emerging jet, with multiple displaced vertices. This search looks for pair production of the scalar mediator at the LHC, which yields events with two SM jets and two emerging jets at leading order. The results are interpreted using two dark sector models with different flavor structures, and exclude mediator masses up to 1950 (1950) GeV for an unflavored (flavor-aligned) dark QCD model. The unflavored results surpass a previous search for emerging jets by setting the most stringent mediator mass exclusion limits to date, while the flavor-aligned results provide the first direct mediator mass exclusion limits to date.

     
    more » « less
    Free, publicly-accessible full text available July 1, 2025