skip to main content


Search for: All records

Creators/Authors contains: "Thakur, S."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Radio frequency (RF) driven helicon plasma sources are commonly used for their ability to produce high-density argon plasmas ( n > 10 19  m −3 ) at relatively moderate powers (typical RF power < 2 kW). Typical electron temperatures are <10 eV and typical ion temperatures are <0.6 eV. A newly designed helicon antenna assembly (with concentric, double-layered, fully liquid-cooled RF-transparent windows) operates in steady-state at RF powers up to 10 kW. We report on the dependence of argon plasma density, electron temperature and ion temperature on RF power. At 10 kW, ion temperatures >2 eV in argon plasmas are measured with laser induced fluorescence, which is consistent with a simple volume averaged 0D power balance model. 1D Monte Carlo simulations of the neutral density profile for these plasma conditions show strong neutral depletion near the core and predict neutral temperatures well above room temperatures. The plasmas created in this high-power helicon source (when light ions are employed) are ideally suited for fusion divertor plasma-material interaction studies and negative ion production for neutral beams. 
    more » « less
  2. Free, publicly-accessible full text available November 1, 2024
  3. Free, publicly-accessible full text available November 1, 2024
  4. Free, publicly-accessible full text available August 1, 2024
  5. A<sc>bstract</sc>

    A search for new physics in final states consisting of at least one photon, multiple jets, and large missing transverse momentum is presented, using proton-proton collision events at a center-of-mass energy of 13 TeV. The data correspond to an integrated luminosity of 137 fb1, recorded by the CMS experiment at the CERN LHC from 2016 to 2018. The events are divided into mutually exclusive bins characterized by the missing transverse momentum, the number of jets, the number of b-tagged jets, and jets consistent with the presence of hadronically decaying W, Z, or Higgs bosons. The observed data are found to be consistent with the prediction from standard model processes. The results are interpreted in the context of simplified models of pair production of supersymmetric particles via strong and electroweak interactions. Depending on the details of the signal models, gluinos and squarks of masses up to 2.35 and 1.43 TeV, respectively, and electroweakinos of masses up to 1.23 TeV are excluded at 95% confidence level.

     
    more » « less
    Free, publicly-accessible full text available October 1, 2024
  6. Free, publicly-accessible full text available October 1, 2024
  7. A<sc>bstract</sc>

    A search for high-mass dimuon resonance production in association with one or more b quark jets is presented. The study uses proton-proton collision data collected with the CMS detector at the LHC corresponding to an integrated luminosity of 138 fb1at a center-of-mass energy of 13 TeV. Model-independent limits are derived on the number of signal events with exactly one or more than one b quark jet. Results are also interpreted in a lepton-flavor-universal model with Z′ boson couplings to a bb quark pair (gb), an sb quark pair (gbδbs), and any same-flavor charged lepton (g) or neutrino pair (gν), with|gν|=|g|. For a Z′ boson with a mass$$ {m}_{{\textrm{Z}}^{\prime }} $$mZ= 350 GeV (2 TeV) andbs|< 0.25, the majority of the parameter space with 0.0057 <|g|< 0.35 (0.25 <|g|< 0.43) and 0.0079 < |gb| < 0.46 (0.34 < |gb| < 0.57) is excluded at 95% confidence level. Finally, constraints are set on a Z′ model with parameters consistent with low-energy b → sℓℓmeasurements. In this scenario, most of the allowed parameter space is excluded for a Z′ boson with 350 <$$ {m}_{{\textrm{Z}}^{\prime }} $$mZ< 500 GeV, while the constraints are less stringent for higher$$ {m}_{{\textrm{Z}}^{\prime }} $$mZhypotheses. This is the first dedicated search at the LHC for a high-mass dimuon resonance produced in association with multiple b quark jets, and the constraints obtained on models with this signature are the most stringent to date.

     
    more » « less
    Free, publicly-accessible full text available October 1, 2024
  8. Abstract

    The mass of the top quark is measured in 36.3$$\,\text {fb}^{-1}$$fb-1of LHC proton–proton collision data collected with the CMS detector at$$\sqrt{s}=13\,\text {Te}\hspace{-.08em}\text {V} $$s=13TeV. The measurement uses a sample of top quark pair candidate events containing one isolated electron or muon and at least four jets in the final state. For each event, the mass is reconstructed from a kinematic fit of the decay products to a top quark pair hypothesis. A profile likelihood method is applied using up to four observables per event to extract the top quark mass. The top quark mass is measured to be$$171.77\pm 0.37\,\text {Ge}\hspace{-.08em}\text {V} $$171.77±0.37GeV. This approach significantly improves the precision over previous measurements.

     
    more » « less
    Free, publicly-accessible full text available October 1, 2024