Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, May 23 until 2:00 AM ET on Friday, May 24 due to maintenance. We apologize for the inconvenience.

# Search for:All records

Creators/Authors contains: "Theran, Louis"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

1. Abstract

Let$$\textbf{p}$$$p$be a configuration ofnpoints in$$\mathbb R^d$$${R}^{d}$for somenand some$$d \ge 2$$$d\ge 2$. Each pair of points defines an edge, which has a Euclidean length in the configuration. A path is an ordered sequence of the points, and a loop is a path that begins and ends at the same point. A path or loop, as a sequence of edges, also has a Euclidean length, which is simply the sum of its Euclidean edge lengths. We are interested in reconstructing$$\textbf{p}$$$p$given a set of edge, path and loop lengths. In particular, we consider the unlabeled setting where the lengths are given simply as a set of real numbers, and are not labeled with the combinatorial data describing which paths or loops gave rise to these lengths. In this paper, we study the question of when$$\textbf{p}$$$p$will be uniquely determined (up to an unknowable Euclidean transform) from some given set of path or loop lengths through an exhaustive trilateration process. Such a process has already been used for the simpler problem of reconstruction using unlabeled edge lengths. This paper also provides a complete proof that this process must work in that edge-setting when given a sufficiently rich set of edge measurements and assuming that$$\textbf{p}$$$p$is generic.

more » « less
2. We consider the zero-energy deformations of periodic origami sheets with generic crease patterns. Using a mapping from the linear folding motions of such sheets to force-bearing modes in conjunction with the Maxwell–Calladine index theorem we derive a relation between the number of linear folding motions and the number of rigid body modes that depends only on the average coordination number of the origami’s vertices. This supports the recent result by Tachi [T. Tachi,Origami6, 97–108 (2015)] which shows periodic origami sheets with triangular faces exhibit two-dimensional spaces of rigidly foldable cylindrical configurations. We also find, through analytical calculation and numerical simulation, branching of this configuration space from the flat state due to geometric compatibility constraints that prohibit finite Gaussian curvature. The same counting argument leads to pairing of spatially varying modes at opposite wavenumber in triangulated origami, preventing topological polarization but permitting a family of zero-energy deformations in the bulk that may be used to reconfigure the origami sheet.

more » « less
3.
more » « less