skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.

Search for: All records

Creators/Authors contains: "Thiagarajan, Jayaraman J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Limited-Angle Computed Tomography (LACT) is a nondestructive 3D imaging technique used in a variety of applications ranging from security to medicine. The limited angle coverage in LACT is often a dominant source of severe artifacts in the reconstructed images, making it a challenging imaging inverse problem. Diffusion models are a recent class of deep generative models for synthesizing realistic images using image denoisers. In this work, we present DOLCE as the first framework for integrating conditionally-trained diffusion models and explicit physical measurement models for solving imaging inverse problems. DOLCE achieves the SOTA performance in highly ill-posed LACT by alternating between the data-fidelity and sampling updates of a diffusion model conditioned on the transformed sinogram. We show through extensive experimentation that unlike existing methods, DOLCE can synthesize high-quality and structurally coherent 3D volumes by using only 2D conditionally pre-trained diffusion models. We further show on several challenging real LACT datasets that the same pretrained DOLCE model achieves the SOTA performance on drastically different types of images. 
    more » « less
    Free, publicly-accessible full text available October 1, 2024
  2. The problem of adapting models from a source domain using data from any target domain of interest has gained prominence, thanks to the brittle generalization in deep neural networks. While several test-time adaptation techniques have emerged, they typically rely on synthetic data augmentations in cases of limited target data availability. In this paper, we consider the challenging setting of single-shot adaptation and explore the design of augmentation strategies. We argue that augmentations utilized by existing methods are insufficient to handle large distribution shifts, and hence propose a new approach SiSTA (Single-Shot Target Augmentations), which first fine-tunes a generative model from the source domain using a single-shot target, and then employs novel sampling strategies for curating synthetic target data. Using experiments with a state-of-the-art domain adaptation method, we find that SiSTA produces improvements as high as 20% over existing baselines under challenging shifts in face attribute detection, and that it performs competitively to oracle models obtained by training on a larger target dataset. Our codes can be accessed at 
    more » « less