skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Thiede, John"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. To reduce their environmental impact, cloud datacenters' are increasingly focused on optimizing applications' carbon-efficiency, or work done per mass of carbon emitted. To facilitate such optimizations, we present Carbon Containers, a simple system-level facility, which extends prior work on power containers, that automatically regulates applications' carbon emissions in response to variations in both their work-load's intensity and their energy's carbon-intensity. Specifically, Carbon Containers enable applications to specify a maximum carbon emissions rate (in g.CO2e/hr), and then transparently enforce this rate via a combination of vertical scaling, container migration, and suspend/resume while maximizing either energy-efficiency or performance. Carbon Containers are especially useful for applications that i) must continue running even during high-carbon periods, and ii) execute in regions with few variations in carbon-intensity. These low-variability regions also tend to have high average carbon-intensity, which increases the importance of regulating carbon emissions. We implement a Carbon Container prototype by extending Linux Containers to incorporate the mechanisms above and evaluate it using real workload traces and carbon-intensity data from multiple regions. We compare Carbon Containers with prior work that regulates carbon emissions by suspending/resuming applications during high/low carbon periods. We show that Carbon Containers are more carbon-efficient and improve performance while maintaining similar carbon emissions. 
    more » « less