skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Thirouin, A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We observed 12 Plutinos over two separated years with the 4.3 m Lowell’s Discovery Channel Telescope. Here, we present the first light-curve data for those objects. Three of them (2014 JL80, 2014 JO80, and 2014 JQ80) display a large light-curve amplitude explainable by a single elongated object, but they are most likely caused by a contact binary system due to their light-curve morphology. These potential contact binaries have rotational periods from 6.3 to 34.9 hr and peak-to-peak light-curve variability between 0.6 and 0.8mag. We present partial light curves, allowing us to constrain the light-curve amplitude and the rotational period of another nine Plutinos. By merging our data with the literature, we estimate that up to ∼40% of the Plutinos could be contact binaries. Interestingly, we found that all of the suspected contact binaries in the 3:2 resonance are small with absolute magnitude H>6mag. Based on our sample and the literature, up to ∼50% of the small Plutinos are potential contact binaries. 
    more » « less