skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Thoma, Greg"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Nutrient recovery in domestic wastewater treatment has increasingly become an important area of study as the supply of non-renewable phosphorus decreases. Recent bench-scale trials indicate that co-generation of struvite and hydrogen using electrochemical methods may offer an alternative to existing recovery options utilized by municipal wastewater treatment facilities. However, implementation has yet to be explored at plant-scale. In the development of novel nutrient recovery processes, both economic and environmental assessments are necessary to guide research and their design. The aim of this study was to conduct a prospective life cycle assessment and cost analysis of a new electrochemical struvite recovery technology that utilizes a sacrificial magnesium anode to precipitate struvite and generate hydrogen gas. This technology was modeled using process simulation software GPS-X and CapdetWorks assuming its integration in a full-scale existing wastewater treatment plant with and without anaerobic digestion. Struvite recoveries of 18–33% were achieved when anaerobic digestion was included, with a break-even price of $6.03/kg struvite and $15.58/kg of hydrogen required to offset increased costs for recovery. Struvite recovery reduced aquatic eutrophication impacts as well as terrestrial acidification impacts. Tradeoffs between benefits from struvite and burdens from electrode manufacturing were found for several impact categories. 
    more » « less
  2. Phosphorus (P) recovery from wastewaters as struvite (MgNH4PO4·6H2O) may be a viable alternative fertilizer-P source for agriculture. The objective of this study was to evaluate the economic and environmental implications of struvite as a fertilizer-P source for flood-irrigated rice (Oryza sativa) relative to other commonly used commercially available fertilizer-P sources. A field study was conducted in 2019 and 2020 to evaluate the effects of wastewater-recovered struvite (chemically precipitated struvite (CPST) and electrochemically precipitated struvite (ECST)) on rice yield response in a P-deficient, silt–loam soil in eastern Arkansas relative to triple superphosphate, monoammonium and diammonium phosphate, and rock phosphate. A life cycle assessment methodology was used to estimate the global warming potentials associated with rice produced with the various fertilizer-P sources. Life cycle inventory data were based on the field trials conducted with and without struvite application for both years. A partial budget analysis showed that, across both years, net revenues for ECST and CPST were 1.4 to 26.8% lower than those associated with the other fertilizer-P sources. The estimated greenhouse gas emissions varied between 0.58 and 0.70 kg CO2 eq kg rice−1 from CPST and between 0.56 and 0.81 kg CO2 eq kg rice−1 from ECST in 2019 and 2020, respectively, which were numerically similar to those for the other fertilizer-P sources in 2019 and 2020. The similar rice responses compared to commercially available fertilizer-P sources suggest that wastewater-recovered struvite materials might be an alternative fertilizer-P-source option for flood-irrigated rice production if struvite can become price-competitive to other fertilizer-P sources. 
    more » « less