skip to main content

Search for: All records

Creators/Authors contains: "Thomas, A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Ocean waves excite continuous globally observable seismic signals. We use data from 52 globally distributed seismographs to analyze the vertical component primary microseism wavefield at 14–20 s period between the late 1980s and August 2022. This signal is principally composed of Rayleigh waves generated by ocean wave seafloor tractions at less than several hundred meters depth, and is thus a proxy for near-coastal swell activity. Here we show that increasing seismic amplitudes at 3σsignificance occur at 41 (79%) and negative trends occur at 3σsignificance at eight (15%) sites. The greatest absolute increase occurs for the Antarctic Peninsula with respective acceleration amplitude and energy trends ( ± 3σ) of 0.037 ± 0.008 nm s−2y−1(0.36 ± 0.08% y−1) and 4.16 ± 1.07 nm2 s−2y−1(0.58 ± 0.15% y−1), where percentage trends are relative to historical medians. The inferred global mean near-coastal ocean wave energy increase rate is 0.27 ± 0.03% y−1for all data and is 0.35 ± 0.04% y−1since 1 January 2000. Strongly correlated seismic amplitude station histories occur to beyond 50of separation and show regional-to-global associations with El Niño and La Niña events.

    more » « less

    The Sagittarius Dwarf Spheroidal galaxy (Sgr) is investigated as a target for dark matter (DM) annihilation searches utilizing J-factor distributions calculated directly from a high-resolution hydrodynamic simulation of the infall and tidal disruption of Sgr around the Milky Way. In contrast to past studies, the simulation incorporates DM, stellar and gaseous components for both the Milky Way and the Sgr progenitor galaxy. The simulated distributions account for significant tidal disruption affecting the DM density profile. Our estimate of the J-factor value for Sgr, JSgr = 1.48 × 1010 M$_\odot ^2$ kpc−5 (6.46 × 1016 GeV cm−5), is significantly lower than found in prior studies. This value, while formally a lower limit, is likely close to the true J-factor value for Sgr. It implies a DM cross-section incompatibly large in comparison with existing constraints would be required to attribute recently observed gamma-ray emission from Sgr to DM annihilation. We also calculate a J-factor value using a NFW profile fitted to the simulated DM density distribution to facilitate comparison with past studies. This NFW J-factor value supports the conclusion that most past studies have overestimated the dark matter density of Sgr on small scales. This, together with the fact that the Sgr has recently been shown to emit gamma-rays of astrophysical origin, complicate the use of Sgr in indirect DM detection searches.

    more » « less
  3. Abstract Sea ice primary production is considered a valuable energy source for Arctic marine food webs, yet the extent remains unclear through existing methods. Here we quantify ice algal carbon signatures using unique lipid biomarkers in over 2300 samples from 155 species including invertebrates, fish, seabirds, and marine mammals collected across the Arctic shelves. Ice algal carbon signatures were present within 96% of the organisms investigated, collected year-round from January to December, suggesting continuous utilization of this resource despite its lower proportion to pelagic production. These results emphasize the importance of benthic retention of ice algal carbon that is available to consumers year-round. Finally, we suggest that shifts in the phenology, distribution and biomass of sea ice primary production anticipated with declining seasonal sea ice will disrupt sympagic-pelagic-benthic coupling and consequently the structure and the functioning of the food web which is critical for Indigenous Peoples, commercial fisheries, and global biodiversity. 
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  4. Free, publicly-accessible full text available November 1, 2024
  5. Cory, Jenny (Ed.)
    Abstract Nitrogen (N) is a key nutrient required by all living organisms for growth and development, but is a limiting resource for many organisms. Organisms that feed on material with low N content, such as wood, might be particularly prone to N limitation. In this study, we investigated the degree to which the xylophagous larvae of the stag beetle Ceruchus piceus (Weber) use associations with N-fixing bacteria to acquire N. We paired acetylene reduction assays by cavity ring-down absorption spectroscopy (ARACAS) with 15N2 incubations to characterize rates of N fixation within C. piceus. Not only did we detect significant N fixation activity within C. piceus larvae, but we calculated a rate that was substantially higher than most previous reports for N fixation in insects. While taking these measurements, we discovered that N fixation within C. piceus can decline rapidly in a lab setting. Consequently, our results demonstrate that previous studies, which commonly keep insects in the lab for long periods of time prior to and during measurement, may have systematically under-reported rates of N fixation in insects. This suggests that within-insect N fixation may contribute more to insect nutrition and ecosystem-scale N budgets than previously thought. 
    more » « less
    Free, publicly-accessible full text available July 7, 2024
  6. Abstract

    The fruit flyDrosophila melanogasterhas provided important insights into how sensory information is transduced by transient receptor potential (TRP) channels in the peripheral nervous system (PNS). However, TRP channels alone have not been able to completely model mechanosensitive transduction in mechanoreceptive chordotonal neurons (CNs). Here, we show that, in addition to TRP channels, the sole voltage-gated sodium channel (NaV) inDrosophila, Para, is localized to the dendrites of CNs. Para is localized to the distal tip of the dendrites in all CNs, from embryos to adults, and is colocalized with the mechanosensitive TRP channels No mechanoreceptor potential C (NompC) and Inactive/Nanchung (Iav/Nan). Para localization also demarcates spike initiation zones (SIZs) in axons and the dendritic localization of Para is indicative of a likely dendritic SIZ in fly CNs. Para is not present in the dendrites of other peripheral sensory neurons. In both multipolar and bipolar neurons in the PNS, Para is present in a proximal region of the axon, comparable to the axonal initial segment (AIS) in vertebrates, 40–60 μm from the soma in multipolar neurons and 20–40 μm in bipolar neurons. Whole-cell reduction ofparaexpression using RNAi in CNs of the adult Johnston’s organ (JO) severely affects sound-evoked potentials (SEPs). However, the duality of Para localization in the CN dendrites and axons identifies a need to develop resources to study compartment-specific roles of proteins that will enable us to better understand Para’s role in mechanosensitive transduction.

    more » « less
  7. Free, publicly-accessible full text available June 1, 2024
  8. Helical aromatic oligoamide foldamers provide negative cavities that strongly bind dicationic guests, giving complexes as stable pseudofoldaxanes with few precedents.

    more » « less
    Free, publicly-accessible full text available May 10, 2024
  9. Abstract

    G-quadruplexes (G4s) are a set of stable secondary structures that form within guanine-rich regions of single-stranded nucleic acids that pose challenges for DNA maintenance. The G-rich DNA sequence at telomeres has a propensity to form G4s of various topologies. The human protein complexes Replication Protein A (RPA) and CTC1-STN1-TEN1 (CST) are implicated in managing G4s at telomeres, leading to DNA unfolding and allowing telomere replication to proceed. Here, we use fluorescence anisotropy equilibrium binding measurements to determine the ability of these proteins to bind various telomeric G4s. We find that the ability of CST to specifically bind G-rich ssDNA is substantially inhibited by the presence of G4s. In contrast, RPA tightly binds telomeric G4s, showing negligible changes in affinity for G4 structure compared to linear ssDNAs. Using a mutagenesis strategy, we found that RPA DNA-binding domains work together for G4 binding, and simultaneous disruption of these domains reduces the affinity of RPA for G4 ssDNA. The relative inability of CST to disrupt G4s, combined with the greater cellular abundance of RPA, suggests that RPA could act as a primary protein complex responsible for resolving G4s at telomeres.

    more » « less