skip to main content

Search for: All records

Creators/Authors contains: "Thomas, Anthony"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available January 1, 2024
  2. We apply deep learning to daytime satellite imagery to predict changes in income and population at high spatial resolution in US data. For grid cells with lateral dimensions of 1.2 km and 2.4 km (where the average US county has dimension of 51.9 km), our model predictions achieve R 2 values of 0.85 to 0.91 in levels, which far exceed the accuracy of existing models, and 0.32 to 0.46 in decadal changes, which have no counterpart in the literature and are 3–4 times larger than for commonly used nighttime lights. Our network has wide application for analyzing localized shocks. (JEL C45, R11, R23)
    Free, publicly-accessible full text available December 1, 2023
  3. Hyperdimensional (HD) computing is a set of neurally inspired methods for obtaining highdimensional, low-precision, distributed representations of data. These representations can be combined with simple, neurally plausible algorithms to effect a variety of information processing tasks. HD computing has recently garnered significant interest from the computer hardware community as an energy-efficient, low-latency, and noise-robust tool for solving learning problems. In this review, we present a unified treatment of the theoretical foundations of HD computing with a focus on the suitability of representations for learning.