skip to main content

Search for: All records

Creators/Authors contains: "Thomas, D"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available May 10, 2023
  2. Free, publicly-accessible full text available May 1, 2023
  3. When isotopes of carbon are fed to photosynthesizing leaves, metabolites of the Calvin–Benson cycle (CBC) are rapidly labeled initially, but then the rate of labeling slows considerably, raising questions about the integration of the CBC within leaf metabolism. We have used 2-h time courses of labeling of Camelina sativa leaf metabolites to test models of 12 C washout when the CO 2 source is rapidly switched to 13 CO 2 . Fitting exponential functions to the time course of CBC metabolites, we found evidence for three temporally distinct processes contributing to the labeling but none for metabolically inactive pools. Wemore »next modeled the data of all metabolites by 13 C isotopically nonstationary metabolic flux analysis, testing a variety of flux networks. In the model that best explains measured data, three processes determine CBC metabolite labeling. First is fixation of incoming 13 CO 2 ; second is dilution by weakly labeled carbon in cytosolic glucose reentering the CBC following oxidative pentose phosphate pathway reactions, which forms a shunt bypassing much of the CBC. Third, very weakly labeled carbon from the vacuole further dilutes the labeling. This model predicts the shunt proceeds at about 5% of the rate of net CO 2 fixation and explains the three phases of labeling. In showing the interconnection of three compartments, we have drawn a more complete picture of how carbon moves through photosynthetic metabolism in a way that integrates the CBC, cytosolic sugar pools, glucose-6-phosphate shunt, and vacuolar sugars into a single system.« less
    Free, publicly-accessible full text available March 15, 2023
  4. Campbell, Barbara J. (Ed.)
    ABSTRACT Hadal snailfishes are the deepest-living fishes in the ocean, inhabiting trenches from depths of ∼6,000 to 8,000 m. While the microbial communities in trench environments have begun to be characterized, the microbes associated with hadal megafauna remain relatively unknown. Here, we describe the gut microbiomes of two hadal snailfishes, Pseudoliparis swirei (Mariana Trench) and Notoliparis kermadecensis (Kermadec Trench), using 16S rRNA gene amplicon sequencing. We contextualize these microbiomes with comparisons to the abyssal macrourid Coryphaenoides yaquinae and the continental shelf-dwelling snailfish Careproctus melanurus . The microbial communities of the hadal snailfishes were distinct from their shallower counterparts and weremore »dominated by the same sequences related to the Mycoplasmataceae and Desulfovibrionaceae . These shared taxa indicate that symbiont lineages have remained similar to the ancestral symbiont since their geographic separation or that they are dispersed between geographically distant trenches and subsequently colonize specific hosts. The abyssal and hadal fishes contained sequences related to known, cultured piezophiles, microbes that grow optimally under high hydrostatic pressure, including Psychromonas , Moritella , and Shewanella . These taxa are adept at colonizing nutrient-rich environments present in the deep ocean, such as on particles and in the guts of hosts, and we hypothesize they could make a dietary contribution to deep-sea fishes by degrading chitin and producing fatty acids. We characterize the gut microbiota within some of the deepest fishes to provide new insight into the diversity and distribution of host-associated microbial taxa and the potential of these animals, and the microbes they harbor, for understanding adaptation to deep-sea habitats. IMPORTANCE Hadal trenches, characterized by high hydrostatic pressures and low temperatures, are one of the most extreme environments on our planet. By examining the microbiome of abyssal and hadal fishes, we provide insight into the diversity and distribution of host-associated life at great depth. Our findings show that there are similar microbial populations in fishes geographically separated by thousands of miles, reflecting strong selection for specific microbial lineages. Only a few psychropiezophilic taxa, which do not reflect the diversity of microbial life at great depth, have been successfully isolated in the laboratory. Our examination of deep-sea fish microbiomes shows that typical high-pressure culturing methodologies, which have largely remained unchanged since the pioneering work of Claude ZoBell in the 1950s, may simulate the chemical environment found in animal guts and helps explain why the same deep-sea genera are consistently isolated.« less
    Free, publicly-accessible full text available April 27, 2023
  5. An intriguing new class of two-dimensional (2D) materials based on metal–organic frameworks (MOFs) has recently been developed that displays electrical conductivity, a rarity among these nanoporous materials. The emergence of conducting MOFs raises questions about their fundamental electronic properties, but few studies exist in this regard. Here, we present an integrated theory and experimental investigation to probe the effects of metal substitution on the charge transport properties of M-HITP, where M = Ni or Pt and HITP = 2,3,6,7,10,11-hexaiminotriphenylene. The results show that the identity of the M-HITP majority charge carrier can be changed without intentional introduction of electronically activemore »dopants. We observe that the selection of the metal ion substantially affects charge transport. Using the known structure, Ni-HITP, we synthesized a new amorphous material, a-Pt-HITP, which although amorphous is nevertheless found to be porous upon desolvation. Importantly, this new material exhibits p-type charge transport behavior, unlike Ni-HITP, which displays n-type charge transport. These results demonstrate that both p- and n-type materials can be achieved within the same MOF topology through appropriate choice of the metal ion.« less
    Free, publicly-accessible full text available April 14, 2023
  6. Abstract Objective: The aim of this study was to investigate the performance of key hospital units associated with emergency care of both routine emergency and pandemic (COVID-19) patients under capacity enhancing strategies. Methods: This investigation was conducted using whole-hospital, resource-constrained, patient-based, stochastic, discrete-event, simulation models of a generic 200-bed urban U.S. tertiary hospital serving routine emergency and COVID-19 patients. Systematically designed numerical experiments were conducted to provide generalizable insights into how hospital functionality may be affected by the care of COVID-19 pandemic patients along specially designated care paths, under changing pandemic situations, from getting ready to turning all of itsmore »resources to pandemic care. Results: Several insights are presented. For example, each day of reduction in average ICU length of stay increases intensive care unit patient throughput by up to 24% for high COVID-19 daily patient arrival levels. The potential of 5 specific interventions and 2 critical shifts in care strategies to significantly increase hospital capacity is also described. Conclusions: These estimates enable hospitals to repurpose space, modify operations, implement crisis standards of care, collaborate with other health care facilities, or request external support, thereby increasing the likelihood that arriving patients will find an open staffed bed when 1 is needed.« less
    Free, publicly-accessible full text available January 10, 2023
  7. Free, publicly-accessible full text available October 10, 2022
  8. The Mozambique tilapia ( Oreochromis mossambicus ) is a fascinating taxon for evolutionary and ecological research. It is an important food fish and one of the most widely distributed tilapias. Because males grow faster than females, genetically male tilapia are preferred in aquaculture. However, studies of sex determination and sex control in O . mossambicus have been hindered by the limited characterization of the genome. To address this gap, we assembled a high-quality genome of O . mossambicus , using a combination of high coverage of Illumina and Nanopore reads, coupled with Hi-C and RNA-Seq data. Our genome assembly spansmore »1,007 Mb with a scaffold N50 of 11.38 Mb. We successfully anchored and oriented 98.6% of the genome on 22 linkage groups (LGs). Based on re-sequencing data for male and female fishes from three families, O . mossambicus segregates both an XY system on LG14 and a ZW system on LG3. The sex-patterned SNPs shared by two XY families narrowed the sex determining regions to ∼3 Mb on LG14. The shared sex-patterned SNPs included two deleterious missense mutations in ahnak and rhbdd1 , indicating the possible roles of these two genes in sex determination. This annotated chromosome-level genome assembly and identification of sex determining regions represents a valuable resource to help understand the evolution of genetic sex determination in tilapias.« less
    Free, publicly-accessible full text available December 8, 2022
  9. Free, publicly-accessible full text available January 10, 2023
  10. Free, publicly-accessible full text available September 3, 2022