skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Thomas, E"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 1, 2026
  2. New automated testing for the data linking functions by @RohanBhattaraiNP New function to correct subject ids by @AbakahAlexander 
    more » « less
  3. CLI Documentation for Users an expanded CLI file options CLI Documentation for Users by @Kshemaahna in https://github.com/caltechlibrary/caltechdata_api/pull/66 Expanded CLI file options by @Kshemaahna and @tmorrell New Contributors @Kshemaahna made their first contribution in https://github.com/caltechlibrary/caltechdata_api/pull/66 Full Changelog: https://github.com/caltechlibrary/caltechdata_api/compare/v1.10.0...v1.10.1 
    more » « less
  4. Olfactory dysfunction is a common outcome of brain injuries, negatively affecting quality of life. The adult mammalian nervous system has limited capacity for olfactory recovery, making it challenging to study olfactory regeneration and recovery. In contrast, zebrafish are ideal for such studies due to its extensive and lifelong regenerative abilities. In this work, we describe a model of excitotoxic injury in the olfactory bulb (OB) using quinolinic acid lesions in adult zebrafish of both sexes. We observed extensive neurodegeneration in both the OB and olfactory epithelium, including a reduction of bulbar volume, neuronal death, and impaired olfactory function. Recovery mechanisms involved tissue remodeling, cell proliferation, and neurogenesis, leading to full restoration of olfactory function by 21 d. This study provides a model to further investigate the effects of excitotoxicity on olfactory dysfunction and highlights zebrafish's remarkable regenerative abilities, providing insights into potential therapeutic strategies for restoring olfactory function following brain injuries. 
    more » « less
    Free, publicly-accessible full text available September 17, 2026
  5. Free, publicly-accessible full text available June 25, 2026
  6. The elastic moduli of tissues are connected to their states of health and function. The epithelial monolayer is a simple, minimal, tissue model that is often used to gain understanding of mechanical behavior at the cellular or multi-cellular scale. Here we investigate how the elastic modulus of Madin Darby Canine Kidney (MDCK) cells depends on their packing density. Rather than measuring elasticity at the sub-cellular scale with local probes, we characterize the monolayer at the multicellular scale, as one would a thin slab of elastic material. We use a micro-indentation system to apply gentle forces to the apical side of MDCK monolayers, applying a normal force to approximately 100 cells in each experiment. In low-density confluent monolayers, we find that the elastic modulus decreases with increasing cell density. At high densities, the modulus appears to plateau. This finding will help guide our understanding of known collective behaviors in epithelial monolayers and other tissues where variations in cell packing density are correlated with cell motion. 
    more » « less
    Free, publicly-accessible full text available May 1, 2026
  7. Free, publicly-accessible full text available July 29, 2026
  8. The study of $$ \overline{B}\to {D}^{\ast}\tau {\overline{\nu}}_{\tau } $$angular distribution can be used to obtain information about new physics (or beyond the Standard Model) couplings, which are motivated by various B anomalies. However, the inability to measure precisely the three-momentum of the lepton hinders such measurements, as the tau decay contains one or more undetected neutrinos. Here, we present a measurable angular distribution of $$ \overline{B}\to {D}^{\ast}\tau {\overline{\nu}}_{\tau } $$ by considering the additional decay $$ \tau \to \ell {\nu}_{\tau }{\overline{\nu}}_{\ell } $$, wℓ. The full process used is$$ \overline{B}\to {D}^{\ast}\left(\to D\pi \right)\tau \left(\to \ell {\nu}_{\tau }{\overline{\nu}}_{\ell}\right){\overline{\nu}}_{\tau } $$ B ¯ D τ ν τ ν ¯ ν ¯ τ , in which only theℓandD*are reconstructed. A fit to the experimental angular distribution of this process can be used to extract information on new physics parameters. To demonstrate the feasibility of this approach, we generate simulated data for this process and perform a sensitivity study to obtain the expected statistical errors on new physics parameters from experiments in the near future. We obtain a sensitivity of the order of 5% for the right-handed current and around 6% for the tensor current. In addition, we use the recent lattice QCD data onB→D*form factors and obtain correlations between form factors and new physics parameters. 
    more » « less
    Free, publicly-accessible full text available April 17, 2026
  9. Repository now has a full suite of automated tests. Outdated datacite43 files replaced with files from the current version of CaltechDATA. Migrated the repository to use a modern pyproject.toml and setup.cfg setup. Incorporated a workflow to update setup.cfg automatically when codemeta.json changes, via the codemeta2cff.yml GitHub Action. return_id option added to caltechdata_edit, which matched the behavior of caltechdata_write by returning the record id CLI supports a profile file with saved orcid and funding data, better orcid support, bug fixes, and many improvements to the validate function Example jupyter notebook added 
    more » « less
  10. Free, publicly-accessible full text available July 1, 2026