skip to main content

Search for: All records

Creators/Authors contains: "Thomas, L."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available May 2, 2023
  2. Free, publicly-accessible full text available December 23, 2022
  3. Abstract Most mammals sniff to detect odors, but little is known how the periodic inhale and exhale that make up a sniff helps to improve odor detection. In this combined experimental and theoretical study, we use fluid mechanics and machine olfaction to rationalize the benefits of sniffing at different rates. We design and build a bellows and sensor system to detect the change in current as a function of odor concentration. A fast sniff enables quick odor recognition, but too fast a sniff makes the amplitude of the signal comparable to noise. A slow sniff increases signal amplitude but delaysmore »its transmission. This trade-off may inspire the design of future devices that can actively modulate their sniffing frequency according to different odors.« less
    Free, publicly-accessible full text available December 1, 2022
  4. Free, publicly-accessible full text available October 28, 2022
  5. Abstract Background Distributional responses by alpine taxa to repeated, glacial-interglacial cycles throughout the last two million years have significantly influenced the spatial genetic structure of populations. These effects have been exacerbated for the American pika ( Ochotona princeps ), a small alpine lagomorph constrained by thermal sensitivity and a limited dispersal capacity. As a species of conservation concern, long-term lack of gene flow has important consequences for landscape genetic structure and levels of diversity within populations. Here, we use reduced representation sequencing (ddRADseq) to provide a genome-wide perspective on patterns of genetic variation across pika populations representing distinct subspecies. Tomore »investigate how landscape and environmental features shape genetic variation, we collected genetic samples from distinct geographic regions as well as across finer spatial scales in two geographically proximate mountain ranges of eastern Nevada. Results Our genome-wide analyses corroborate range-wide, mitochondrial subspecific designations and reveal pronounced fine-scale population structure between the Ruby Mountains and East Humboldt Range of eastern Nevada. Populations in Nevada were characterized by low genetic diversity (π = 0.0006–0.0009; θ W  = 0.0005–0.0007) relative to populations in California (π = 0.0014–0.0019; θ W  = 0.0011–0.0017) and the Rocky Mountains (π = 0.0025–0.0027; θ W  = 0.0021–0.0024), indicating substantial genetic drift in these isolated populations. Tajima’s D was positive for all sites ( D  = 0.240–0.811), consistent with recent contraction in population sizes range-wide. Conclusions Substantial influences of geography, elevation and climate variables on genetic differentiation were also detected and may interact with the regional effects of anthropogenic climate change to force the loss of unique genetic lineages through continued population extirpations in the Great Basin and Sierra Nevada.« less
    Free, publicly-accessible full text available December 1, 2022
  6. Free, publicly-accessible full text available September 1, 2022
  7. Skilled candidates with graduate training are in critical need in the wind energy industry. To prepare for employment in the industry requires both general training (e.g., an engineering degree, a business degree, etc.) and specialized training (e.g., wind energy resource assessment, wind turbine design, environmental impacts training, etc.). Consequently, it is challenging for one educational institution to provide the depth and breadth of course offerings and educational opportunities required. This challenge exists in many multidisciplinary and rapidly evolving fields. WindU is a collaborative National Science Foundation funded effort to respond to this need, by developing and testing a model tomore »establish an expandable, multi-university, multi-disciplinary consortium in STEM graduate education. The consortium consists of multiple universities across the United States who have expertise in wind energy and share distance learning courses. The goal is to both broaden learning opportunities for current students, and to open up the pool of possible students interested in this field. Expanding educational opportunities by developing online delivery of wind energy graduate courses is one strategy to address much needed diversity in the field. Building upon the literature of previous successful consortium development, a new replicable model for setting up a consortium was created, called the Rapid model, with the name reflecting the goal to implement a new consortium within one year. Researchers conducted a study to determine the effectiveness of the model, through observing program meetings, interviewing faculty, staff and administrators engaged in the consortium development work, and examining course sharing outcomes. Researchers identified a number of aspects of the model most important for establishing the consortium, including the importance of external facilitation, committed faculty, staff and administrators, and useful tools and procedures. The research also identified some areas for model modification. This replicable model adds to the knowledge base concerning establishment of an expandable university consortium in graduate STEM education« less
    Free, publicly-accessible full text available July 1, 2022
  8. Sponges (phylum Porifera) are common inhabitants of kelp forest ecosystems in California, but their diversity and ecological importance are poorly characterized in this biome. Here I use freshly collected samples to describe the diversity of the order Scopalinida in California. Though previously unknown in the region, four new species are described here: Scopalina nausicae sp. nov., S. kuyamu sp. nov., S. goletensis sp. nov., and S. jali sp. nov.. These discoveries illustrate the considerable uncharacterized sponge diversity remaining in California kelp forests, and the utility of SCUBA-based collection to improve our understanding of this diversity. 
  9. Free, publicly-accessible full text available October 1, 2022
  10. Free, publicly-accessible full text available July 1, 2022