skip to main content


Search for: All records

Creators/Authors contains: "Thomas, P."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available September 11, 2024
  2. Thuesen, Erik V. (Ed.)
    Long-term datasets can reveal otherwise undetectable ecological trends, illuminating the historical context of contemporary ecosystem states. We used two decades (1997–2019) of scientific trawling data from a subtidal, benthic site in Puget Sound, Washington, USA to test for gradual trends and sudden shifts in total sea star abundance across 11 species. We specifically assessed whether this community responded to the sea star wasting disease (SSWD) epizootic, which began in 2013. We sampled at depths of 10, 25, 50 and 70 m near Port Madison, WA, and obtained long-term water temperature data. To account for species-level differences in SSWD susceptibility, we divided our sea star abundance data into two categories, depending on the extent to which the species is susceptible to SSWD, then conducted parallel analyses for high-susceptibility and moderate-susceptibility species. The abundance of high-susceptibility sea stars declined in 2014 across depths. In contrast, the abundance of moderate-susceptibility species trended downward throughout the years at the deepest depths– 50 and 70 m–and suddenly declined in 2006 across depths. Water temperature was positively correlated with the abundance of moderate-susceptibility species, and uncorrelated with high-susceptibility sea star abundance. The reported emergence of SSWD in Washington State in the summer of 2014 provides a plausible explanation for the subsequent decline in abundance of high-susceptibility species. However, no long-term stressors or mortality events affecting sea stars were reported in Washington State prior to these years, leaving the declines we observed in moderate-susceptibility species preceding the 2013–2015 SSWD epizootic unexplained. These results suggest that the subtidal sea star community in Port Madison is dynamic, and emphasizes the value of long-term datasets for evaluating patterns of change. 
    more » « less
    Free, publicly-accessible full text available June 9, 2024
  3. Systematic land use planning to address environmental impacts does not typically include human health and wellbeing as explicit inputs. We tested the effects of including issues related to human health, ecosystem services, and community wellbeing on the outputs of a standard land use planning process which is primarily focused on environmental variables. We consulted regional stakeholders to identify the health issues that have environmental links in the Sacramento, California region and to identify potential indicators and datasets that can be used to assess and track these issues. Marxan planning software was used to identify efficient land use patterns to maximize both ecological conservation and human health outcomes. Outputs from five planning scenarios were compared and contrasted, resulting in a spatially explicit series of tradeoffs across the scenarios. Total area required to meet imputed goals ranged from 10.4% to 13.4% of the total region, showing somewhat less efficiency in meeting biodiversity goals when health outcomes are included. Additionally, we found 4.8% of residential areas had high greening needs, but this varied significantly across the six counties. The work provides an example of how integrative assessment can help inform management decisions or stakeholder negotiations potentially leading to better management of the production landscapes in food systems. 
    more » « less
    Free, publicly-accessible full text available July 1, 2024
  4. Electron-doped cuprates consistently exhibit strong antiferromagnetic correlations, leading to the prevalent belief that antiferromagnetic spin fluctuations mediate Cooper pairing in these unconventional superconductors. However, early investigations showed that although antiferromagnetic spin fluctuations create the largest pseudogap at hot spots in momentum space, the superconducting gap is also maximized at these locations. This presented a paradox for spin-fluctuation-mediated pairing: Cooper pairing is strongest at momenta where the normal-state low-energy spectral weight is most suppressed. Here we investigate this paradox and find evidence that a gossamer—meaning very faint—Fermi surface can provide an explanation for these observations. We study Nd2–xCexCuO4 using angle-resolved photoemission spectroscopy and directly observe the Bogoliubov quasiparticles. First, we resolve the previously observed reconstructed main band and the states gapped by the antiferromagnetic pseudogap around the hot spots. Within the antiferromagnetic pseudogap, we also observe gossamer states with distinct dispersion, from which coherence peaks of Bogoliubov quasiparticles emerge below the superconducting critical temperature. Moreover, the direct observation of a Bogoliubov quasiparticle permits an accurate determination of the superconducting gap, yielding a maximum value an order of magnitude smaller than the pseudogap, establishing the distinct nature of these two gaps. We propose that orientation fluctuations in the antiferromagnetic order parameter are responsible for the gossamer states. 
    more » « less
    Free, publicly-accessible full text available September 25, 2024
  5. Abstract

    By combining the unique characteristics of molecular bottlebrushes (MBBs) and the properties of stimuli‐responsive polymers, we show that MBBs with randomly grafted poly(n‐butyl acrylate) and pH‐responsive poly(2‐(N,N‐diethylamino)ethyl methacrylate) (PDEAEMA) side chains are efficient and robust pH‐responsive emulsifiers. Water‐in‐toluene emulsions were formed at pH 4.0 and disrupted by increasing the pH to 10.0. The emulsion generation and disruption was reversible over the ten cycles investigated, and the bottlebrushes remained intact. The exceptional emulsion stability stemmed from the high interfacial binding energy of MBBs, imparted by their large molecular size and Janus architecture at the interface, as evidenced by the interfacial jamming and wrinkling of the assemblies upon reducing the interfacial area. At pH 10.0, PDEAEMA became water‐insoluble, and the MBBs desorbed from the interface, causing de‐emulsification. Consequently, we have shown that the judicious design of MBBs can generate properties of particle emulsifiers from their large size, while the responsiveness of the MBBs enables more potential applications.

     
    more » « less
  6. Abstract

    By combining the unique characteristics of molecular bottlebrushes (MBBs) and the properties of stimuli‐responsive polymers, we show that MBBs with randomly grafted poly(n‐butyl acrylate) and pH‐responsive poly(2‐(N,N‐diethylamino)ethyl methacrylate) (PDEAEMA) side chains are efficient and robust pH‐responsive emulsifiers. Water‐in‐toluene emulsions were formed at pH 4.0 and disrupted by increasing the pH to 10.0. The emulsion generation and disruption was reversible over the ten cycles investigated, and the bottlebrushes remained intact. The exceptional emulsion stability stemmed from the high interfacial binding energy of MBBs, imparted by their large molecular size and Janus architecture at the interface, as evidenced by the interfacial jamming and wrinkling of the assemblies upon reducing the interfacial area. At pH 10.0, PDEAEMA became water‐insoluble, and the MBBs desorbed from the interface, causing de‐emulsification. Consequently, we have shown that the judicious design of MBBs can generate properties of particle emulsifiers from their large size, while the responsiveness of the MBBs enables more potential applications.

     
    more » « less
  7. Free, publicly-accessible full text available May 1, 2024
  8. Solving the wicked problems of food system sustainability requires a process of knowledge co-production among diverse actors in society. We illustrate a generalized workflow for knowledge co-production in food systems with a pair of case studies from the response of the meat and dairy production sectors in the wake of the COVID-19 pandemic. The first case study serves as an example of a scientific workflow and uses a GIS method (location allocation) to examine the supply chain linkages between meat and dairy producers and processors in Ohio. This analysis found that meat producers and processors are less clustered and more evenly distributed across the state than dairy producers and processors, with some dairy processors potentially needing to rely on supply from producers up to 252 km away. The second case study in California adds an example of a stakeholder workflow in parallel to a scientific workflow and describes the outcome of a series of interviews with small and mid-scale meat producers and processors concerning their challenges and opportunities, with the concentration of processors arising as the top challenge faced by producers. We present a pair of workflow diagrams for the two case studies that illustrate where the processes of knowledge co-production are situated. Examining these workflow processes highlights the importance of data privacy, data governance, and boundary spanners that connect stakeholders. 
    more » « less
    Free, publicly-accessible full text available July 1, 2024
  9. Most neglected and underutilized crops were developed and utilized within indigenous agroecological cropping systems. While crop suitability must consider the constraints of the environment, the conditions of agroecological systems and the role of crops within those systems should be considered. Such consideration may guide the implementation of appropriate farming systems specific to different ecosystems and microhabitats. Using the Hawaiian archipelago as a model system of socioecological dynamics, we consider the distribution of agroecological systems and their associated crops to explore how agroecological suitability changes across climate, topography, and soils. We conduct spatial modeling of the potential nature and extent of seven agroecological archetypes based on historical records. The seven spatial models of pre-colonial agroecological systems produced extents distributed across much of the Hawaiian archipelago, with clear adaptive patterns within and across the islands. The distribution of cropping system further affects the appropriateness of crop species application. We argue that the consideration of agroecological niches and associated cropping systems is critical for realizing the potential of underutilized crops and improving the efficiency of contemporary agricultural systems. 
    more » « less
    Free, publicly-accessible full text available March 16, 2024
  10. Abstract

    As a class of semiconductor nanocrystals that exhibit high photoluminescence quantum yield (PLQY) at tunable wavelengths, perovskite nanocrystals (PNCs) are attractive candidates for optoelectronic and light‐emitting devices. However, attempts to optimize PNC integration into such applications suffer from PNC instability and loss of PL over time. Here, we describe the impact of organic and polymeric N‐oxides when used in conjunction with PNCs, whereby a significant increase in PNC quantum yield is observed in solution, and stable PL emission is obtained in polymeric nanocomposites. Specifically, when using aliphatic N‐oxides in ligand exchange with CsPbBr3PNCs in solution, a substantial boost in PNC brightness is observed (~40% or more PLQY increase), followed by an alteration of the perovskite chemistry. When N‐oxide substituents are positioned pendent to a poly(n‐butyl methacrylate) backbone, the optically clear flexible nanocomposite films obtained have bright PL emission and maintain optical clarity for months. X‐ray diffraction is useful for characterizing the PNC crystalline structure following exposure to aliphatic N‐oxides, while electron microscopy (EM) and small‐angle X‐ray scattering (SAXS) measurements of the PNC‐polymer nanocomposites show this polymeric N‐oxide platform to cleanly disperse PNCs in flexible polymer films.

     
    more » « less