skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 16 until 2:00 AM ET on Saturday, May 17 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Thomas, S."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Pyridyl-substituted platinum acetylide complexes bind coinage metal cations, strongly influencing photoluminescence properties. Large counterions maintain the blue phosphorescence profile with large increases in radiative rate and quantum yield. 
    more » « less
    Free, publicly-accessible full text available April 30, 2026
  2. Free, publicly-accessible full text available October 2, 2025
  3. Free, publicly-accessible full text available September 27, 2025
  4. Free, publicly-accessible full text available August 7, 2025
  5. Red-phosphorescent bis-cyclometalated iridium compounds with salicylaldimine, 2-picolinamide, and related ancillary ligand classes are described; the 2-picolinamide analogues exhibit multiple binding modes that influence photophysical properties. 
    more » « less
  6. This perspective focuses on strategies to manipulate and optimize three key determinants of metal-based molecular photosensitizers – the absorption profile, the excited-state redox potentials, and the excited-state lifetime. 
    more » « less
  7. Magnesium oxide (MgO) is a major component of the Earth’s mantle and is expected to play a similar role in the mantles of large rocky exoplanets. At extreme pressures, MgO transitions from the NaClB1 crystal structure to a CsClB2 structure, which may have implications for exoplanetary deep mantle dynamics. In this study, we constrain the phase diagram of MgO with laser-compression along the shock Hugoniot, with simultaneous measurements of crystal structure, density, pressure, and temperature. We identify theB1 toB2 phase transition between 397 and 425 gigapascal (around 9700 kelvin), in agreement with recent theory that accounts for phonon anharmonicity. From 425 to 493 gigapascal, we observe a mixed-phase region of B1 and B2 coexistence. The transformation follows the Watanabe-Tokonami-Morimoto mechanism. Our data are consistent withB2-liquid coexistence above 500 gigapascal and complete melting at 634 gigapascal. This study bridges the gap between previous theoretical and experimental studies, providing insights into the timescale of this phase transition. 
    more » « less
    Free, publicly-accessible full text available June 7, 2025