skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Thomas, Timon"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Feedback processes in galaxies dictate their structure and evolution. Baryons can be cycled through stars, which inject energy into the interstellar medium in supernova explosions, fueling multiphase galactic winds. Cosmic rays (CRs) accelerated at supernova remnants are an important component of feedback. CRs can effectively contribute to wind driving; however, their impact heavily depends on the assumed CR transport model. We run high-resolution “tallbox” simulations of a patch of a galactic disk using the moving mesh magnetohydrodynamics code Arepo, including varied CR implementations and the Crispnonequilibrium thermochemistry model. We characterize the impact of CR feedback on star formation and multiphase outflows. While CR-driven winds are able to supply energy to a global-scale wind, a purely thermal wind loses most of its energy by the time it reaches 3 kpc above the disk midplane. We further find that the adopted CR transport model significantly affects the steady state of the wind. In the model with CR advection, streaming, diffusion, and nonlinear Landau damping, CRs provide very strong feedback. Additionally, accounting for ion-neutral damping (IND) decouples CRs from the cold ISM, which reduces the impact of CRs on the star formation rate. Nevertheless, CRs in this most realistic model are able to accelerate warm gas and levitate cool gas in the wind but have little effect on cold gas and hot gas. This model displays moderate mass loading and significant CR energy loading, demonstrating that IND does not prevent CRs from providing effective feedback. 
    more » « less
    Free, publicly-accessible full text available July 8, 2026
  2. Abstract The formation of galaxies is significantly influenced by galactic winds, possibly driven by cosmic rays due to their long cooling times and better coupling to plasma compared to radiation. In this study, we compare the radio observations of the edge-on galaxy NGC 4217 from the CHANG-ES collaboration catalog with a mock observation of an isolated galaxy based on theareposimulation that adopts the state-of-the-art two-moment cosmic ray transport treatment and multiphase interstellar medium model. We find significant agreement between the simulated and observed images and spectroscopic data for reasonable model parameters. Specifically, we find that (i) the shape of the intensity profiles depends weakly on the magnitude of the magnetic field, the distance of the simulated galaxy, and the normalization of the CR electron spectrum. The agreement between the mock and actual observations is degenerate with respect to these factors; (ii) the multiwavelength spectrum above 0.1 GHz is in agreement with the radio observations and its slope is also only weakly sensitive to the magnetic field strength; (iii) the magnetic field direction exhibits X-shaped morphology, often seen in edge-on galaxies, which is consistent with the observations and indicates the presence of a galactic-scale outflow. Our results highlight the importance of incorporating advanced cosmic ray transport models in simulations and provide a deeper understanding of galactic wind dynamics and its impact on galaxy evolution. 
    more » « less