skip to main content


Search for: All records

Creators/Authors contains: "Thompson, Grant L."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Land-use change is highly dynamic globally and there is great uncertainty about the effects of land-use legacies on contemporary environmental performance. We used a chronosequence of urban grasslands (lawns) that were converted from agricultural and forested lands from 10 to over 130 years prior to determine if land-use legacy influences components of soil biodiversity and composition over time. We used historical aerial imagery to identify sites in Baltimore County, MD (USA) with agricultural versus forest land-use history. Soil samples were taken from these sites as well as from existing well-studied agricultural and forest sites used as historical references by the National Science Foundation Long-Term Ecological Research Baltimore Ecosystem Study program. We found that the microbiomes in lawns of agricultural origin were similar to those in agricultural reference sites, which suggests that the ecological parameters on lawns and reference agricultural systems are similar in how they influence soil microbial community dynamics. In contrast, lawns that were previously forest showed distinct shifts in soil bacterial composition upon recent conversion but reverted back in composition similar to forest soils as the lawns aged over decades. Soil fungal communities shifted after forested land was converted to lawns, but unlike bacterial communities, did not revert in composition over time. Our results show that components of bacterial biodiversity and composition are resistant to change in previously forested lawns despite urbanization processes. Therefore land-use legacy, depending on the prior use, is an important factor to consider when examining urban ecological homogenization.

     
    more » « less
  2. Whalen, Joann (Ed.)
    Abstract

    Residential landscapes are essential to the sustainability of large areas of the United States. However, spatial and temporal variation across multiple domains complicates developing policies to balance these systems’ environmental, economic, and equity dimensions. We conducted multidisciplinary studies in the Baltimore, MD, USA, metropolitan area to identify locations (hotspots) or times (hot moments) with a disproportionate influence on nitrogen export, a widespread environmental concern. Results showed high variation in the inherent vulnerability/sensitivity of individual parcels to cause environmental damage and in the knowledge and practices of individual managers. To the extent that hotspots are the result of management choices by homeowners, there are straightforward approaches to improve outcomes, e.g. fertilizer restrictions and incentives to reduce fertilizer use. If, however, hotspots arise from the configuration and inherent characteristics of parcels and neighborhoods, efforts to improve outcomes may involve more intensive and complex interventions, such as conversion to alternative ecosystem types.

     
    more » « less
    Free, publicly-accessible full text available September 29, 2024