Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We present a three-dimensional computational study of the impact of external magnetic fields on the dynamics of superparamagnetic ferrofluid droplets and rheology of dilute ferrofluid emulsions in planar extensional flows. Specifically, we show how the intensity and direction of uniform magnetic fields affect the planar extensional rheology of ferrofluid emulsions by changing the shape and magnetization of the constituent ferrofluid droplets in suspension. We find that the two traditional extensional viscosities associated with the normal stresses of the bulk emulsion in extension either remain constant or increase with the field intensity; the only exception occurs when the field direction is perpendicular to the extension plane, where increasing the field intensity keeps the planar extensional viscosity constant and modestly decreases the second extensional viscosity. We also find that the droplet tilts in the flow when the external field is not aligned with one of the flow main directions, which changes the recirculation pattern and flow topology inside the droplet. At the microscopic level, the droplet experiences a magnetic torque because of a small misalignment between its magnetization and the external field direction. At the macroscopic level, the bulk emulsion experiences a field-induced internal torque that leads to a nonsymmetric stress tensor with unexpected shear components in extension. To account for this unconventional stress-strain response, we introduce new extensional material functions such as shear and rotational viscosity coefficients that unveil novel rheological signatures of ferrofluid emulsions in planar extensional flows. This study offers new insights into applications based on the field-assisted manipulation of ferrofluid droplets and sheds light on the potential of ferrofluid emulsions as a model system for chiral fluids with internal rotational degrees of freedom that can be activated and controlled by coupling static magnetic fields with hydrodynamic flows.more » « less
-
Abstract Large stocks of soil carbon (C) and nitrogen (N) in northern permafrost soils are vulnerable to remobilization under climate change. However, there are large uncertainties in present‐day greenhouse gas (GHG) budgets. We compare bottom‐up (data‐driven upscaling and process‐based models) and top‐down (atmospheric inversion models) budgets of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) as well as lateral fluxes of C and N across the region over 2000–2020. Bottom‐up approaches estimate higher land‐to‐atmosphere fluxes for all GHGs. Both bottom‐up and top‐down approaches show a sink of CO2in natural ecosystems (bottom‐up: −29 (−709, 455), top‐down: −587 (−862, −312) Tg CO2‐C yr−1) and sources of CH4(bottom‐up: 38 (22, 53), top‐down: 15 (11, 18) Tg CH4‐C yr−1) and N2O (bottom‐up: 0.7 (0.1, 1.3), top‐down: 0.09 (−0.19, 0.37) Tg N2O‐N yr−1). The combined global warming potential of all three gases (GWP‐100) cannot be distinguished from neutral. Over shorter timescales (GWP‐20), the region is a net GHG source because CH4dominates the total forcing. The net CO2sink in Boreal forests and wetlands is largely offset by fires and inland water CO2emissions as well as CH4emissions from wetlands and inland waters, with a smaller contribution from N2O emissions. Priorities for future research include the representation of inland waters in process‐based models and the compilation of process‐model ensembles for CH4and N2O. Discrepancies between bottom‐up and top‐down methods call for analyses of how prior flux ensembles impact inversion budgets, more and well‐distributed in situ GHG measurements and improved resolution in upscaling techniques.more » « less
-
Abstract We synthesized N2O emissions over North America using 17 bottom‐up (BU) estimates from 1980–2016 and five top‐down (TD) estimates from 1998 to 2016. The BU‐based total emission shows a slight increase owing to U.S. agriculture, while no consistent trend is shown in TD estimates. During 2007–2016, North American N2O emissions are estimated at 1.7 (1.0–3.0) Tg N yr−1(BU) and 1.3 (0.9–1.5) Tg N yr−1(TD). Anthropogenic emissions were twice as large as natural fluxes from soil and water. Direct agricultural and industrial activities accounted for 68% of total anthropogenic emissions, 71% of which was contributed by the U.S. Our estimates of U.S. agricultural emissions are comparable to the EPA greenhouse gas (GHG) inventory, which includes estimates from IPCC tier 1 (emission factor) and tier 3 (process‐based modeling) approaches. Conversely, our estimated agricultural emissions for Canada and Mexico are twice as large as the respective national GHG inventories.more » « less
An official website of the United States government
