Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We have measured the linear and nonlinear dielectric responses of S-methoxypropylene carbonate, a highly polar glass-former, for which it has been reported that the “hump,” which is typical of third harmonic susceptibilities, disappears across a 5 K temperature change. To understand this unusual feature, we have measured the responses to high amplitude ac and dc electric fields at the fundamental frequency. The static limits of these results are entered into a model aimed at reproducing nonlinear dielectric susceptibility spectra using the concept of a fictive electric field. This model reproduces the “hump” in the third-harmonic response and its seeming disappearance. It is revealed that the “hump” is predominantly the result of reduced time constants, a consequence of the energy the sample absorbs from the electric field. At elevated temperatures, the “hump” only appears to vanish because its reduced amplitude submerges below the extraordinarily high level of polarization saturation of this liquid.more » « lessFree, publicly-accessible full text available March 21, 2026
-
Nonlinear dielectric measurements are an important tool to access material properties and dynamics concealed in their linear counterparts, but the available data are often intermittent and, on occasion, even contradictory. Employing and refining a recently developed technique for high ac field dielectric measurements in the static limit, we ascertain nonlinear effects in glycerol over a wide temperature range from 230 to 320 K. We find that the temperature dependence of the Piekara factor a, which quantifies the saturation effect, changes drastically around 290 K, from ∂ a/∂ T = +1.4 to −130 in units of 10 −18 V 2 m −2 K −1 . These high values of | a| quantify not only elevated dielectric saturation effects but also indicate a temperature driven increase in higher-order orientational correlations and considerable correction terms with respect to the central limit theorem. No signature of this feature can be found in the corresponding low field data.more » « less
An official website of the United States government
