- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
20
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Thorn, A. (2)
-
Abramchuk, M. (1)
-
Bahrami, F. (1)
-
Bi, W. (1)
-
Fabbris, G. (1)
-
Hajinazar, S. (1)
-
Haskel, D. (1)
-
Irifune, T. (1)
-
Kharabadze, S. (1)
-
Kim, J. H. (1)
-
Kolmogorov, A. N. (1)
-
Kolmogorov, A.N. (1)
-
Sandoval, E.D. (1)
-
Shinmei, T. (1)
-
Tafti, F. (1)
-
#Tyler Phillips, Kenneth E. (0)
-
& *Soto, E. (0)
-
& Ahmed, Khadija. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
- Filter by Editor
-
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
:Chaosong Huang, Gang Lu (0)
-
A. Beygelzimer (0)
-
A. Ghate, K. Krishnaiyer (0)
-
A. I. Sacristán, J. C. (0)
-
A. Weinberg, D. Moore-Russo (0)
-
A. Weinberger (0)
-
A.I. Sacristán, J.C. Cortés-Zavala (0)
-
A.I., Dimitrova (0)
-
ACS (0)
-
AIAA (0)
-
AIAA Propulsion and Energy 2021 (0)
-
AIAA SciTech (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Hajinazar, S. ; Thorn, A. ; Sandoval, E.D. ; Kharabadze, S. ; Kolmogorov, A.N. ( , Computer physics communications)Module for ab initio structure evolution (MAISE) is an open-source package for materials modeling and prediction. The code’s main feature is an automated generation of neural network (NN) interatomic potentials for use in global structure searches. The systematic construction of Behler–Parrinello-type NN models approximating ab initio energy and forces relies on two approaches introduced in our recent studies. An evolutionary sampling scheme for generating reference structures improves the NNs’ mapping of regions visited in unconstrained searches, while a stratified training approach enables the creation of standardized NN models for multiple elements. A more flexible NN architecture proposed here expands themore »applicability of the stratified scheme for an arbitrary number of elements. The full workflow in the NN development is managed with a customizable ‘MAISE-NET’ wrapper written in Python. The global structure optimization capability in MAISE is based on an evolutionary algorithm applicable for nanoparticles, films, and bulk crystals. A multitribe extension of the algorithm allows for an efficient simultaneous optimization of nanoparticles in a given size range. Implemented structure analysis functions include fingerprinting with radial distribution functions and finding space groups with the SPGLIB tool. This work overviews MAISE’s available features, constructed models, and confirmed predictions.« less