Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The M 7.8 Kaikoura earthquake occurred in the northern South Island of New Zealand on 3 Nov., 2016, involving the rupture of >20 faults. To understand the complexity of the Kaikoura earthquake, details of the fault ge- ometry, seismic velocity distribution, and stress field are necessary. We have undertaken seismic tomography along the c. 200 km length of the rupture zone. Data from both 51 temporary stations and 22 permanent (GeoNet) stations were collected from March 2011 to December 2018. The hypocenter of the Kaikoura earthquake and aftershocks near the Kekerengu fault locate along lineaments where seismic velocity changes laterally in the epicentral region. In the uppermost crust, lower velocities occur beneath the Emu Plain and Cape Campbell. A higher velocity region near Kaikoura may have acted as a barrier that prevented eastward rupture from the hypocenter and led to the complex fault distribution in this area. These complexities in the seismic velocity structure may relate to the multi-segment rupture character of the Kaikoura earthquake. Spatial correlations between rupture areas and high Vp/Vs suggest the involvement of overpressured fluid in the nucleation and propagation of rupture segments, which is also supported by the reactivation of unfavourably oriented strike-slip ruptures, many lying at c.70◦ to the regional maximum compressive stress trajectories.more » « less
-
ABSTRACT Seismic tomography is the most abundant source of information about the internal structure of the Earth at scales ranging from a few meters to thousands of kilometers. It constrains the properties of active volcanoes, earthquake fault zones, deep reservoirs and storage sites, glaciers and ice sheets, or the entire globe. It contributes to outstanding societal problems related to natural hazards, resource exploration, underground storage, and many more. The recent advances in seismic tomography are being translated to nondestructive testing, medical ultrasound, and helioseismology. Nearly 50 yr after its first successful applications, this article offers a snapshot of modern seismic tomography. Focused on major challenges and particularly promising research directions, it is intended to guide both Earth science professionals and early-career scientists. The individual contributions by the coauthors provide diverse perspectives on topics that may at first seem disconnected but are closely tied together by a few coherent threads: multiparameter inversion for properties related to dynamic processes, data quality, and geographic coverage, uncertainty quantification that is useful for geologic interpretation, new formulations of tomographic inverse problems that address concrete geologic questions more directly, and the presentation and quantitative comparison of tomographic models. It remains to be seen which of these problems will be considered solved, solved to some extent, or practically unsolvable over the next decade.more » « less
-
Abstract We present two new seismic velocity models for Alaska from joint inversions of body-wave and ambient-noise-derived surface-wave data, using two different methods. Our work takes advantage of data from many recent temporary seismic networks, including the Incorporated Research Institutions for Seismology Alaska Transportable Array, Southern Alaska Lithosphere and Mantle Observation Network, and onshore stations of the Alaska Amphibious Community Seismic Experiment. The first model primarily covers south-central Alaska and uses body-wave arrival times with Rayleigh-wave group-velocity maps accounting for their period-dependent lateral sensitivity. The second model results from direct inversion of body-wave arrival times and surface-wave phase travel times, and covers the entire state of Alaska. The two models provide 3D compressional- (VP) and shear-wave velocity (VS) information at depths ∼0–100 km. There are many similarities as well as differences between the two models. The first model provides a clear image of the high-velocity subducting plate and the low-velocity mantle wedge, in terms of the seismic velocities and the VP/VS ratio. The statewide model provides clearer images of many features such as sedimentary basins, a high-velocity anomaly in the mantle wedge under the Denali volcanic gap, low VP in the lower crust under Brooks Range, and low velocities at the eastern edge of Yakutat terrane under the Wrangell volcanic field. From simultaneously relocated earthquakes, we also find that the depth to the subducting Pacific plate beneath southern Alaska appears to be deeper than previous models.more » « less
-
Abstract The Laguna del Maule (LdM) volcanic field comprises the greatest concentration of postglacial rhyolite in the Andes and includes the products of ~40 km3of explosive and effusive eruptions. Recent observations at LdM by interferometric synthetic aperture radar and global navigation satellite system geodesy have revealed inflation at rates exceeding 20 cm/year since 2007, capturing an ongoing period of growth of a potentially large upper crustal magma reservoir. Moreover, magnetotelluric and gravity studies indicate the presence of fluids and/or partial melt in the upper crust near the center of inflation. Petrologic observations imply repeated, rapid extraction of rhyolitic melt from crystal mush stored at depths of 4–6 km during at least the past 26 ka. We utilize multiple types of surface‐wave observations to constrain the location and geometry of low‐velocity domains beneath LdM. We present a three‐dimensional shear‐wave velocity model that delineates a ~450‐km3shallow magma reservoir ~2 to 8 km below surface with an average melt fraction of ~5%. Interpretation of the seismic tomography in light of existing gravity, magnetotelluric, and geodetic observations supports this model and reveals variations in melt content and a deeper magma system feeding the shallow reservoir in greater detail than any of the geophysical methods alone. Geophysical imaging of the LdM magma system today is consistent with the petrologic inferences of the reservoir structure and growth during the past 20–60 kyr. Taken together with the ongoing unrest, a future rhyolite eruption of at least the scale of those common during the Holocene is a reasonable possibility.more » « less