skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Tian, Mengkun"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. Abstract Crystalline materials with broken inversion symmetry can exhibit a spontaneous electric polarization, which originates from a microscopic electric dipole moment. Long-range polar or anti-polar order of such permanent dipoles gives rise to ferroelectricity or antiferroelectricity, respectively. However, the recently discovered antiferroelectrics of fluorite structure (HfO2and ZrO2) are different: A non-polar phase transforms into a polar phase by spontaneous inversion symmetry breaking upon the application of an electric field. Here, we show that this structural transition in antiferroelectric ZrO2gives rise to a negative capacitance, which is promising for overcoming the fundamental limits of energy efficiency in electronics. Our findings provide insight into the thermodynamically forbidden region of the antiferroelectric transition in ZrO2and extend the concept of negative capacitance beyond ferroelectricity. This shows that negative capacitance is a more general phenomenon than previously thought and can be expected in a much broader range of materials exhibiting structural phase transitions. 
    more » « less
  3. Abstract Antiferroelectric materials, where the transition between antipolar and polar phase is controlled by external electric fields, offer exceptional energy storage capacity with high efficiencies, giant electrocaloric effect, and superb electromechanical response. PbZrO3is the first discovered and the archetypal antiferroelectric material. Nonetheless, substantial challenges in processing phase pure PbZrO3have limited studies of the undoped composition, hindering understanding of the phase transitions in this material or unraveling the controversial origins of a low‐field ferroelectric phase observed in lead zirconate thin films. Leveraging highly oriented PbZrO3thin films, a room‐temperature ferrielectric phase is observed in the absence of external electric fields, with modulations of amplitude and direction of the spontaneous polarization and large anisotropy for critical electric fields required for phase transition. The ferrielectric state observations are qualitatively consistent with theoretical predictions, and correlate with very high dielectric tunability, and ultrahigh strains (up to 1.1%). This work suggests a need for re‐evaluation of the fundamental science of antiferroelectricity in this archetypal material. 
    more » « less