skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Timmes, F. X."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The evolutionary path of massive stars begins at helium burning. Energy production for this phase of stellar evolution is dominated by the reaction path 3$$\alpha \rightarrow ^{12}$$ α 12 C$$(\alpha ,\gamma )^{16}$$ ( α , γ ) 16 O and also determines the ratio of$$^{12}$$ 12 C/$$^{16}$$ 16 O in the stellar core. This ratio then sets the evolutionary trajectory as the star evolves towards a white dwarf, neutron star or black hole. Although the reaction rate of the 3$$\alpha $$ α process is relatively well known, since it proceeds mainly through a single narrow resonance in$$^{12}$$ 12 C, that of the$$^{12}$$ 12 C$$(\alpha ,\gamma )^{16}$$ ( α , γ ) 16 O reaction remains uncertain since it is the result of a more difficult to pin down, slowly-varying, portion of the cross section over a strong interference region between the high-energy tails of subthreshold resonances, the low-energy tails of higher-energy broad resonances and direct capture. Experimental measurements of this cross section require herculean efforts, since even at higher energies the cross section remains small and large background sources are often present that require the use of very sensitive experimental methods. Since the$$^{12}$$ 12 C$$(\alpha ,\gamma )^{16}$$ ( α , γ ) 16 O reaction has such a strong influence on many different stellar objects, it is also interesting to try to back calculate the required rate needed to match astrophysical observations. This has become increasingly tempting, as the accuracy and precision of observational data has been steadily improving. Yet, the pitfall to this approach lies in the intermediary steps of modeling, where other uncertainties needed to model a star’s internal behavior remain highly uncertain. 
    more » « less
    Free, publicly-accessible full text available April 1, 2026
  2. Abstract We consider the combined effects that overshooting and the12C(α,γ)16O reaction rate have on variable white dwarf (WD) stellar models. We find that carbon–oxygen (CO) WD models continue to yield pulsation signatures of the current experimental12C(α,γ)16O reaction rate probability distribution function when overshooting is included in the evolution. These signatures hold because the resonating mantle region, encompassing ≃0.2Min a typical ≃0.6MWD model, still undergoes radiative helium burning during the evolution to a WD. Our specific models show two potential low-order adiabatic g-modes,g2andg6, that signalize the12C(α,γ)16O reaction rate probability distribution function. Both g-mode signatures induce average relative period shifts of ΔP/P= 0.44% and ΔP/P= 1.33% forg2andg6, respectively. We find thatg6is a trapped mode, and theg2period signature is inversely proportional to the12C(α,γ)16O reaction rate. Theg6period signature generally separates the slower and faster reaction rates, and has a maximum relative period shift of ΔP/P= 3.45%. We conclude that low-order g-mode periods from CO WDs may still serve as viable probes for the12C(α,γ)16O reaction rate probability distribution function when overshooting is included in the evolution. 
    more » « less
  3. Abstract We seek signatures of the current experimental 12 C α , γ 16 O reaction rate probability distribution function in the pulsation periods of carbon–oxygen white dwarf (WD) models. We find that adiabatic g-modes trapped by the interior carbon-rich layer offer potentially useful signatures of this reaction rate probability distribution function. Probing the carbon-rich region is relevant because it forms during the evolution of low-mass stars under radiative helium-burning conditions, mitigating the impact of convective mixing processes. We make direct quantitative connections between the pulsation periods of the identified trapped g-modes in variable WD models and the current experimental 12 C α , γ 16 O reaction rate probability distribution function. We find an average spread in relative period shifts of Δ P / P ≃ ±2% for the identified trapped g-modes over the ±3 σ uncertainty in the 12 C α , γ 16 O reaction rate probability distribution function—across the effective temperature range of observed DAV and DBV WDs and for different WD masses, helium shell masses, and hydrogen shell masses. The g-mode pulsation periods of observed WDs are typically given to six to seven significant figures of precision. This suggests that an astrophysical constraint on the 12 C α , γ 16 O reaction rate could, in principle, be extractable from the period spectrum of observed variable WDs. 
    more » « less
  4. Context. At present, there are strong indications that white dwarf (WD) stars with masses well below the Chandrasekhar limit ( M Ch ≈ 1.4 M ⊙ ) contribute a significant fraction of SN Ia progenitors. The relative fraction of stable iron-group elements synthesized in the explosion has been suggested as a possible discriminant between M Ch and sub- M Ch events. In particular, it is thought that the higher-density ejecta of M Ch WDs, which favours the synthesis of stable isotopes of nickel, results in prominent [Ni  II ] lines in late-time spectra (≳150 d past explosion). Aims. We study the explosive nucleosynthesis of stable nickel in SNe Ia resulting from M Ch and sub- M Ch progenitors. We explore the potential for lines of [Ni  II ] in the optical an near-infrared (at 7378 Å and 1.94 μm) in late-time spectra to serve as a diagnostic of the exploding WD mass. Methods. We reviewed stable Ni yields across a large variety of published SN Ia models. Using 1D M Ch delayed-detonation and sub- M Ch detonation models, we studied the synthesis of stable Ni isotopes (in particular, 58 Ni) and investigated the formation of [Ni  II ] lines using non-local thermodynamic equilibrium radiative-transfer simulations with the CMFGEN code. Results. We confirm that stable Ni production is generally more efficient in M Ch explosions at solar metallicity (typically 0.02–0.08 M ⊙ for the 58 Ni isotope), but we note that the 58 Ni yield in sub- M Ch events systematically exceeds 0.01 M ⊙ for WDs that are more massive than one solar mass. We find that the radiative proton-capture reaction 57 Co( p ,  γ ) 58 Ni is the dominant production mode for 58 Ni in both M Ch and sub- M Ch models, while the α -capture reaction on 54 Fe has a negligible impact on the final 58 Ni yield. More importantly, we demonstrate that the lack of [Ni  II ] lines in late-time spectra of sub- M Ch events is not always due to an under-abundance of stable Ni; rather, it results from the higher ionization of Ni in the inner ejecta. Conversely, the strong [Ni  II ] lines predicted in our 1D M Ch models are completely suppressed when 56 Ni is sufficiently mixed with the innermost layers, which are rich in stable iron-group elements. Conclusions. [Ni  II ] lines in late-time SN Ia spectra have a complex dependency on the abundance of stable Ni, which limits their use in distinguishing among M Ch and sub- M Ch progenitors. However, we argue that a low-luminosity SN Ia displaying strong [Ni  II ] lines would most likely result from a Chandrasekhar-mass progenitor. 
    more » « less
  5. Abstract Using ground-based gravitational-wave detectors, we probe the mass function of intermediate-mass black holes (IMBHs) wherein we also include BHs in the upper mass gap at ∼60–130 M ⊙ . Employing the projected sensitivity of the upcoming LIGO and Virgo fourth observing run (O4), we perform Bayesian analysis on quasi-circular nonprecessing, spinning IMBH binaries (IMBHBs) with total masses 50–500 M ⊙ , mass ratios 1.25, 4, and 10, and dimensionless spins up to 0.95, and estimate the precision with which the source-frame parameters can be measured. We find that, at 2 σ , the mass of the heavier component of IMBHBs can be constrained with an uncertainty of ∼10%–40% at a signal-to-noise ratio of 20. Focusing on the stellar-mass gap with new tabulations of the 12 C( α , γ ) 16 O reaction rate and its uncertainties, we evolve massive helium core stars using MESA to establish the lower and upper edges of the mass gap as ≃ 59 − 13 + 34 M ⊙ and ≃ 139 − 14 + 30 M ⊙ respectively, where the error bars give the mass range that follows from the ±3 σ uncertainty in the 12 C( α , γ ) 16 O nuclear reaction rate. We find that high resolution of the tabulated reaction rate and fine temporal resolution are necessary to resolve the peak of the BH mass spectrum. We then study IMBHBs with components lying in the mass gap and show that the O4 run will be able to robustly identify most such systems. Finally, we reanalyze GW190521 with a state-of-the-art aligned-spin waveform model, finding that the primary mass lies in the mass gap with 90% credibility. 
    more » « less
  6. Abstract The collapse of degenerate oxygen–neon cores (i.e., electron-capture supernovae or accretion-induced collapse) proceeds through a phase in which a deflagration wave (“flame”) forms at or near the center and propagates through the star. In models, the assumed speed of this flame influences whether this process leads to an explosion or to the formation of a neutron star. We calculate the laminar flame speeds in degenerate oxygen–neon mixtures with compositions motivated by detailed stellar evolution models. These mixtures include trace amounts of carbon and have a lower electron fraction than those considered in previous work. We find that trace carbon has little effect on the flame speeds, but that material with electron fraction has laminar flame speeds that are times faster than those at . We provide tabulated flame speeds and a corresponding fitting function so that the impact of this difference can be assessed via full star hydrodynamical simulations of the collapse process. 
    more » « less