- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0002000000000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Allen, Brendon C (2)
-
Basyal, Sujata (2)
-
Ting, Jonathan A (2)
-
Mishra, Kislaya (1)
-
Rose, Chad G (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Hybrid exoskeletons are used to blend the rehabilitative efficacy and mitigate the shortcomings of functional electrical stimulation (FES) and exoskeleton-based rehabilitative solutions. This paper introduces a novel nonlinear controller that may potentially improve the rehabilitative efficiency of a lower limb hybrid exoskeleton by implementing four key features into the FES and exoskeleton controllers. First, the FES input to the user’s muscles is saturated based on user preference to ensure user comfort. Second, rather than discarding the excess control effort from the saturated FES input, it is redirected into the exoskeleton’s motor controller. Third, a safe deep neural network (DNN) is designed to estimate the unknown dynamics of the hybrid exoskeleton and the DNN is implemented in the FES controller to improve the control efficiency and tracking performance. Fourth, an adaptive update law is designed to estimate the unknown muscle control effectiveness to facilitate the implementation of the DNN. Lyapunov stability-based methods are used to generate real-time adaptive update laws that will train the adaptive estimate of the muscle effectiveness and the output layer weights of the DNN in real-time, ensure the effectiveness and safety of the controllers, and prove global asymptotic tracking of the desired trajectory.more » « less
-
Ting, Jonathan A; Basyal, Sujata; Mishra, Kislaya; Rose, Chad G; Allen, Brendon C (, IEEE)Essential tremor (ET) is the most prevalent type of movement disorder responsible for inducing tremor in an individual’s limbs. Various scales, such as the Fahn-Tolosa-Marin (FTM) tremor rating scale and The Essential Tremor Rating Assessment Scale (TETRAS), have been developed and used by physicians to classify the severity of ET. While the FTM scale is highly utilized in ET severity diagnosis, it relies on subjective assessments of the tremor. TETRAS, on the other hand, provides a more quantitative analysis of ET severity by ranking the severity of the tremor based on tremor magnitude. However, TETRAS requires a trained professional (such as a neurologist) to be present, and even in such cases, physicians use TETRAS as a metric baseline to visually approximate the severity of the tremor. In this pilot study, a deep neural network (DNN)-based scale is developed to accurately classify ET severity without the presence of trained experts. To validate the developed DNN-based ET classification scale, a preliminary experiment is performed on a single healthy participant during a leg extension exercise. Tremor was artificially induced at the knee using a motorized lower-limb exoskeleton. To enable near real-time ET classification and to enable rapid DNN response, the DNN assessed the severity of ET every 0.5 seconds; utilizing the previous 0.5 seconds of knee-angle data for DNN training and ET severity classification. The results of the preliminary experiment showed that the DNN achieved a training accuracy of 94.80% and a validation accuracy of 95.18%. Additionally, the DNN achieved a training accuracy of 93.63% and a validation accuracy of 94.05% using computer generated knee-angle measurements.more » « less
An official website of the United States government
