skip to main content

Search for: All records

Creators/Authors contains: "Tingle, Jessica L."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The force-generating capacity of muscle depends upon many factors including the actin-myosin filament overlap due to the relative length of the sarcomere. Consequently, the force output of a muscle may vary throughout its range of motion, and the body posture allowing maximum force generation may differ even in otherwise similar species. We hypothesized that corn snakes would show an ontogenetic shift in sarcomere length range from being centered on the plateau of the length-tension curve in small individuals to being on the descending limb in adults. Sarcomere lengths across the plateau would be advantageous for locomotion, while the descending limb would be advantageous for constriction due to the increase in force as the coil tightens around the prey. To test this hypothesis, we collected sarcomere lengths from freshly euthanized corn snakes, preserving segments in straight and maximally curved postures, and quantifying sarcomere length via light microscopy. We dissected 7 muscles (spinalis, semispinalis, multifidus, longissimus dorsi, iliocostalis (dorsal and ventral), and levator costae) in an ontogenetic series of corn snakes (mass = 80–335 g) at multiple regions along the body (anterior, middle, and posterior). Our data shows all of the muscles analyzed are on the descending limb of the length-tension curve atmore »rest across all masses, regions, and muscles analyzed, with muscles shortening onto or past the plateau when flexed. While these results are consistent with being advantageous for constriction at all sizes, there could also be unknown benefits of this sarcomere arrangement for locomotion or striking.

    « less
  2. The small structures that decorate biological surfaces can significantly affect behavior, yet the diversity of animal–environment interactions essential for survival makes ascribing functions to structures challenging. Microscopic skin textures may be particularly important for snakes and other limbless locomotors, where substrate interactions are mediated solely through body contact. While previous studies have characterized ventral surface features of some snake species, the functional consequences of these textures are not fully understood. Here, we perform a comparative study, combining atomic force microscopy measurements with mathematical modeling to generate predictions that link microscopic textures to locomotor performance. We discover an evolutionary convergence in the ventral skin structures of a few sidewinding specialist vipers that inhabit sandy deserts—an isotropic texture that is distinct from the head-to-tail-oriented, micrometer-sized spikes observed on a phylogenetically broad sampling of nonsidewinding vipers and other snakes from diverse habitats and wide geographic range. A mathematical model that relates structural directionality to frictional anisotropy reveals that isotropy enhances movement during sidewinding, whereas anisotropy improves movement during slithering via lateral undulation of the body. Our results highlight how an integrated approach can provide quantitative predictions for structure–function relationships and insights into behavioral and evolutionary adaptations in biological systems.