skip to main content

Search for: All records

Creators/Authors contains: "Tinker, Jeremy L."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    We present the measurements of the small-scale clustering for the emission-line galaxy (ELG) sample from the extended Baryon Oscillation Spectroscopic Survey (eBOSS) in the Sloan Digital Sky Survey IV (SDSS-IV). We use conditional abundance matching method to interpret the clustering measurements from 0.34 to $70\, h^{-1}\, \textrm {Mpc}$. In order to account for the correlation between properties of ELGs and their environment, we add a secondary connection between star formation rate of ELGs and halo accretion rate. Three parameters are introduced to model the ELG [O ii] luminosity and to mimic the target selection of eBOSS ELGs. The parameters in our models are optimized using Markov Chain Monte Carlo (MCMC) method. We find that by conditionally matching star formation rate of galaxies and the halo accretion rate, we are able to reproduce the eBOSS ELG small-scale clustering within 1σ error level. Our best-fitting model shows that the eBOSS ELG sample only consists of $\sim 12{{\ \rm per\ cent}}$ of all star-forming galaxies, and the satellite fraction of eBOSS ELG sample is 19.3 per cent. We show that the effect of assembly bias is $\sim 20{{\ \rm per\ cent}}$ on the two-point correlation function and $\sim 5{{\ \rm per\ cent}}$ on the voidmore »probability function at scale of $r\sim 20 \, h^{-1}\, \rm Mpc$.

    « less
  2. ABSTRACT

    We measure the small-scale clustering of the Data Release 16 extended Baryon Oscillation Spectroscopic Survey Luminous Red Galaxy sample, corrected for fibre-collisions using Pairwise Inverse Probability weights, which give unbiased clustering measurements on all scales. We fit to the monopole and quadrupole moments and to the projected correlation function over the separation range $7-60\, h^{-1}{\rm Mpc}$ with a model based on the aemulus cosmological emulator to measure the growth rate of cosmic structure, parametrized by fσ8. We obtain a measurement of fσ8(z = 0.737) = 0.408 ± 0.038, which is 1.4σ lower than the value expected from 2018 Planck data for a flat ΛCDM model, and is more consistent with recent weak-lensing measurements. The level of precision achieved is 1.7 times better than more standard measurements made using only the large-scale modes of the same sample. We also fit to the data using the full range of scales $0.1\text{--}60\, h^{-1}{\rm Mpc}$ modelled by the aemulus cosmological emulator and find a 4.5σ tension in the amplitude of the halo velocity field with the Planck + ΛCDM model, driven by a mismatch on the non-linear scales. This may not be cosmological in origin, and could be due to a breakdown in the Halo Occupation Distribution model used inmore »the emulator. Finally, we perform a robust analysis of possible sources of systematics, including the effects of redshift uncertainty and incompleteness due to target selection that were not included in previous analyses fitting to clustering measurements on small scales.

    « less
  3. Abstract We present the empirical dust attenuation (EDA) framework—a flexible prescription for assigning realistic dust attenuation to simulated galaxies based on their physical properties. We use the EDA to forward model synthetic observations for three state-of-the-art large-scale cosmological hydrodynamical simulations: SIMBA, IllustrisTNG, and EAGLE. We then compare the optical and UV color–magnitude relations, ( g − r ) − M r and (far-UV −near-UV) − M r , of the simulations to a M r < − 20 and UV complete Sloan Digital Sky Survey galaxy sample using likelihood-free inference. Without dust, none of the simulations match observations, as expected. With the EDA, however, we can reproduce the observed color–magnitude with all three simulations. Furthermore, the attenuation curves predicted by our dust prescription are in good agreement with the observed attenuation–slope relations and attenuation curves of star-forming galaxies. However, the EDA does not predict star-forming galaxies with low A V since simulated star-forming galaxies are intrinsically much brighter than observations. Additionally, the EDA provides, for the first time, predictions on the attenuation curves of quiescent galaxies, which are challenging to measure observationally. Simulated quiescent galaxies require shallower attenuation curves with lower amplitude than star-forming galaxies. The EDA, combined with forwardmore »modeling, provides an effective approach for shedding light on dust in galaxies and probing hydrodynamical simulations. This work also illustrates a major limitation in comparing galaxy formation models: by adjusting dust attenuation, simulations that predict significantly different galaxy populations can reproduce the same UV and optical observations.« less
  4. ABSTRACT

    The total luminosity of satellite galaxies around a central galaxy, Lsat, is a powerful metric for probing dark matter haloes. We utilize data from the Sloan Digital Sky Survey and DESI Legacy Imaging Surveys to explore the relationship between Lsat and galaxy properties for a sample of 117 966 central galaxies with z ≤ 0.15. At fixed stellar mass, we find that every galaxy property we explore correlates with Lsat, suggesting that dark matter haloes can influence them. We quantify these correlations by computing the mutual information between Lsat and secondary properties and explore how this varies as a function of stellar mass and star-formation activity. We find that absolute r-band magnitude correlates more strongly with Lsat than stellar mass across all galaxy populations; and that effective radius, velocity dispersion, and Sérsic index do so as well for star-forming and quiescent galaxies. Lsat is influenced by the mass of the host halo as well as the halo formation history, with younger haloes having higher Lsat. Lsat cannot distinguish between these two effects, but measurements of galaxy large-scale environment can break this degeneracy. For star-forming centrals, Reff, σv, and Sérsic index all correlate with large-scale density, implying that the halo agemore »affects these properties. For quiescent galaxies, all secondary properties are independent of environment, implying that correlations with Lsat are driven only by halo mass. These results are a significant step forward in quantifying the extent of the galaxy–halo connection, and present a new test of galaxy formation models.

    « less