Millions of people across the globe are severely afflicted because of water potability issues, and to proffer a solution to this crisis, efficient and cost-effective desalination techniques are necessitated. Membranes, in particular Graphene-derived membranes, have emerged as a potential answer to this grave problem because of their tunable ionic and molecular sieving capability, thin structure, and customizable microstructure. Among graphene-derived membranes, Graphene Oxide membranes have been the most promising, given the replete presence of oxygen-containing functional groups on its surface. However, the prospects of commercial applicability of these membranes are currently plagued by uneven stacking, crossflow delamination, flawed pores, screening and pH effects, and horizontal defects in the membrane. In addition, due to the selectivity–permeability trade-off that commonly exists in all membranes, the separation efficiency is negatively influenced. This review, while studying these challenges, aims to outline the most recent ground-breaking developments in graphene-based membrane technology, encompassing their separation mechanism, selectivity, adjustable mechanical characteristics, and uses. Additionally, we have covered in detail how several process variables such as temperature, total oxygen concentration, and functional groups affect the effectiveness of membrane separation with the focal point tilted toward studying the currently used intercalation techniques and effective nanomaterial graphene oxide membranes for water desalination
- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
00000030000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Karim, Alamgir (3)
-
Singh, Maninderjeet (3)
-
Tiwary, Saurabh Kr (3)
-
Bera, Sumit (1)
-
Chavan, Shubham Vasant (1)
-
Dabade, Siddharaj (1)
-
Douglas, Jack F. (1)
-
Likhi, Farzana Hasan (1)
-
Nieves, Elianie (1)
-
Pradhan, Nihar R. (1)
-
Raghavan, Dharmaraj (1)
-
Shook, Brian T. (1)
-
Thantirige, Rukshan (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract -
Tiwary, Saurabh Kr ; Singh, Maninderjeet ; Likhi, Farzana Hasan ; Dabade, Siddharaj ; Douglas, Jack F. ; Karim, Alamgir ( , ACS Environmental Au)
-
Bera, Sumit ; Singh, Maninderjeet ; Thantirige, Rukshan ; Tiwary, Saurabh Kr ; Shook, Brian T. ; Nieves, Elianie ; Raghavan, Dharmaraj ; Karim, Alamgir ; Pradhan, Nihar R. ( , Small Science)
High‐energy‐density storage devices play a major role in modern electronics from traditional lithium‐ion batteries to supercapacitors for a variety of applications from rechargeable devices to advanced military equipment. Despite the mass adoption of polymer capacitors, their application is limited by their low energy densities and low‐temperature tolerance. Polymer nanocomposites based on 2D nanomaterials have superior capacitive energy densities, higher thermal stabilities, and higher mechanical strength as compared to the pristine polymers and nanocomposites based on 0D or 1D nanomaterials, thus making them ideal for high‐energy‐density dielectric energy storage applications. Here, the recent advances in 2D‐nanomaterial‐based nanocomposites and their implications for energy storage applications are reviewed. Nanocomposites based on conducting 2D nanofillers such as graphene, reduced graphene oxide, MXenes, semiconducting 2D nanofillers including transition metal dichalcogenides such as MoS2, dielectric 2D nanofillers including hBN, Mica, Al2O3, TiO2, Ca2Nb3O10and MMT, and their effects on permittivity, dielectric strength, capacitive energy density, efficiency, thermal stability, and the mechanical strength, are discussed. Also, the theory and machine‐learning‐guided design of polymer 2D nanomaterial composites is learnt and the challenges and opportunities for developing ultrahigh‐capacitive‐energy‐density devices based on these nanofiller polymer composites are presented.