skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Tiznado, William"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    The aromaticity and dynamics of a set of recently proposed neutral 5- and 6-membered heterocycles that are closed by dative (donor–acceptor) or multi-center σ bonds, and have resonance forms with a Hückel number of π-electrons, are examined. The donors and acceptors in the rings include N, O, and F, and B, Be, and Mg, respectively. The planar geometry of the rings, coupled with evidence from different measures of aromaticity, namely the NICS zz , and NICS πzz components of the conventional nucleus independent chemical shifts (NICS), and ring current strengths (RCS), indicate non-trivial degrees of aromaticity in certain cases, including the cyclic C 3 B 2 OH 6 and C 3 BOH 5 isomers, both with three bonds to the O site in the ring. The former is lower in energy by at least 17.6 kcal mol −1 relative to linear alternatives obtained from molecular dynamics simulations in this work. Some of the other systems examined are best described as non-aromatic. Ring opening, closing, and isomerization are observed in molecular dynamics simulations for some of the systems studied. In a few cases, the ring indeed persists. 
    more » « less