skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.

Search for: All records

Creators/Authors contains: "Tobin, Nicolas"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Despite recent advances in the development of computational methods of modeling thrombosis, relatively little effort has been made in developing methods of modeling blood clot embolization. Such a model would provide substantially greater understanding of the mechanics of embolization, as in-vitro and in-vivo characterization of embolization is difficult. Here, a method of computationally simulating embolization is developed. Experiments are performed of blood clots formed in a polycarbonate tube, where phosphate-buffered saline is run through the tube at increasing flow rates until the clot embolizes. The experiments revealed embolization can be initiated by leading edge and trailing edge detachment or by non-uniform detachment. Stress-relaxation experiments are also performed to establish values of constitutive parameters for subsequent simulations. The embolization in the tube is reproduced in silico using a multiphase volume-of-fluid approach, where the clot is modeled as viscoelastic. By varying the constitutive parameters at the wall, embolization can be reproduced in-silico at varying flow rates, and a range of constitutive parameters fitting the experiments is reported. Here, the leading edge embolization is simulated at flow rates consistent with the experiments demonstrating excellent agreement in this specific behavior. 
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  2. Thrombosis and thromboembolism are deadly risk factors in blood-contacting biomedical devices, and in-silico models of thrombosis are attractive tools to understand the mechanics of these processes, though the simulation of thromboembolism remains underdeveloped. The purpose of this study is to modify an existing computational thrombosis model to allow for thromboembolism and to investigate the behavior of the modified model at a range of flow rates. The new and existing models are observed to lead to similar predictions of thrombosis in a canonical backward-facing step geometry across flow rates, and neither model predicts thrombosis in a turbulent flow. Simulations are performed by increasing flow rates in the case of a clot formed at lower flow to induce embolization. While embolization is observed, most of the clot breakdown is by shear rather than by breakup and subsequent transport of clotted material, and further work is required in the formulation and validation of embolization. This model provides a framework to further investigate thromboembolization. 
    more » « less