skip to main content


Search for: All records

Creators/Authors contains: "Tobin, Patrick C."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Over the past several decades, forests worldwide have experienced increases in biotic disturbances caused by insects and plant pathogens – a trend that is expected to continue with climate warming. Whereas the causes and effects of individual biotic disturbances are well studied, spatiotemporal interactions among multiple biotic disturbances are less so, despite their importance to ecosystem function and resilience. Here, we highlight an emerging phenomenon of “hotspots” of biotic disturbances (that is, two or more biotic disturbances that overlap in space and time), documenting trends in recent decades in temperate conifer forests of the western US. We also explore potential mechanisms behind and effects of biotic disturbance hotspots, with particular focus on how altered post‐disturbance recovery (successional pathways) can have profound consequences for ecosystem resilience and biodiversity conservation. Finally, we propose research directions that can elucidate drivers of biotic disturbance hotspots and their ecological effects at various spatial scales, and provide insight into this new knowledge frontier.

     
    more » « less
    Free, publicly-accessible full text available October 1, 2024
  2. Garnas, Jeff R. (Ed.)
    Abstract Some introduced species cause severe damage, although the majority have little impact. Robust predictions of which species are most likely to cause substantial impacts could focus efforts to mitigate those impacts or prevent certain invasions entirely. Introduced herbivorous insects can reduce crop yield, fundamentally alter natural and managed forest ecosystems, and are unique among invasive species in that they require certain host plants to succeed. Recent studies have demonstrated that understanding the evolutionary history of introduced herbivores and their host plants can provide robust predictions of impact. Specifically, divergence times between hosts in the native and introduced ranges of a nonnative insect can be used to predict the potential impact of the insect should it establish in a novel ecosystem. However, divergence time estimates vary among published phylogenetic datasets, making it crucial to understand if and how the choice of phylogeny affects prediction of impact. Here, we tested the robustness of impact prediction to variation in host phylogeny by using insects that feed on conifers and predicting the likelihood of high impact using four different published phylogenies. Our analyses ranked 62 insects that are not established in North America and 47 North American conifer species according to overall risk and vulnerability, respectively. We found that results were robust to the choice of phylogeny. Although published vascular plant phylogenies continue to be refined, our analysis indicates that those differences are not substantial enough to alter the predictions of invader impact. Our results can assist in focusing biosecurity programs for conifer pests and can be more generally applied to nonnative insects and their potential hosts by prioritizing surveillance for those insects most likely to be damaging invaders. 
    more » « less
  3. Assessing the ecological and economic impacts of non-native species is crucial to providing managers and policymakers with the information necessary to respond effectively. Most non-native species have minimal impacts on the environment in which they are introduced, but a small fraction are highly deleterious. The definition of ‘damaging’ or ‘high-impact’ varies based on the factors determined to be valuable by an individual or group, but interpretations of whether non-native species meet particular definitions can be influenced by the interpreter’s bias or level of expertise, or lack of group consensus. Uncertainty or disagreement about an impact classification may delay or otherwise adversely affect policymaking on management strategies. One way to prevent these issues would be to have a detailed, nine-point impact scale that would leave little room for interpretation and then divide the scale into agreed upon categories, such as low, medium, and high impact. Following a previously conducted, exhaustive search regarding non-native, conifer-specialist insects, the authors independently read the same sources and scored the impact of 41 conifer-specialist insects to determine if any variation among assessors existed when using a detailed impact scale. Each of the authors, who were selected to participate in the working group associated with this study because of their diverse backgrounds, also provided their level of expertise and uncertainty for each insect evaluated. We observed 85% congruence in impact rating among assessors, with 27% of the insects having perfect inter-rater agreement. Variance in assessment peaked in insects with a moderate impact level, perhaps due to ambiguous information or prior assessor perceptions of these specific insect species. The authors also participated in a joint fact-finding discussion of two insects with the most divergent impact scores to isolate potential sources of variation in assessor impact scores. We identified four themes that could be experienced by impact assessors: ambiguous information, discounted details, observed versus potential impact, and prior knowledge. To improve consistency in impact decision-making, we encourage groups to establish a detailed scale that would allow all observed and published impacts to fall under a particular score, provide clear, reproducible guidelines and training, and use consensus-building techniques when necessary. 
    more » « less
  4. Abstract

    The size of adult gypsy moths, (Lymantria disparL.), a capitalbreeder, is correlated with environmental conditions experienced as larvae. Proxies for adult size such as wing length may provide information about habitat quality and population density.

    We used male gypsy moths collected from pheromone traps at intervals through the flight season to assess phenological change in wing length. Consistent with a previous study conducted at our reference site, we found that wing length declines seasonally, likely resulting from phenological reduction in host foliage quality. This pattern was evident at our reference site over 8 years, and at our experimental sites with low‐density populations in 3 years.

    We assessed forest quality using two unique metrics, basal area of red oak (Quercus rubra), a high quality host tree, and a composite value generated from a published ranking of tree species quality for gypsy moth. We did not find a relationship between these metrics and wing length, although we found that the mean size of males was larger in stands with oak.

    Mean wing length in outbreak populations was significantly smaller reflecting density related processes such as intraspecific competition, although there was no significant seasonal effect on wing length.

     
    more » « less
  5. Abstract

    Enhancing tree diversity may be important to fostering resilience to drought‐related climate extremes. So far, little attention has been given to whether tree diversity can increase the survival of trees and reduce its variability in young forest plantations.

    We conducted an analysis of seedling and sapling survival from 34 globally distributed tree diversity experiments (363,167 trees, 168 species, 3744 plots, 7 biomes) to answer two questions: (1) Do drought and tree diversity alter the mean and variability in plot‐level tree survival, with higher and less variable survival as diversity increases? and (2) Do species that survive poorly in monocultures survive better in mixtures and do specific functional traits explain monoculture survival?

    Tree species richness reduced variability in plot‐level survival, while functional diversity (Rao's Q entropy) increased survival and also reduced its variability. Importantly, the reduction in survival variability became stronger as drought severity increased. We found that species with low survival in monocultures survived comparatively better in mixtures when under drought. Species survival in monoculture was positively associated with drought resistance (indicated by hydraulic traits such as turgor loss point), plant height and conservative resource‐acquisition traits (e.g. low leaf nitrogen concentration and small leaf size).

    Synthesis.The findings highlight: (1) The effectiveness of tree diversity for decreasing the variability in seedling and sapling survival under drought; and (2) the importance of drought resistance and associated traits to explain altered tree species survival in response to tree diversity and drought. From an ecological perspective, we recommend mixing be considered to stabilize tree survival, particularly when functionally diverse forests with drought‐resistant species also promote high survival of drought‐sensitive species.

     
    more » « less